1
|
Fernández-Fernández R, López-Igual R, Casadesús J, Sánchez-Romero MA. Analysis of Salmonella lineage-specific traits upon cell sorting. Front Cell Infect Microbiol 2023; 13:1146070. [PMID: 37065195 PMCID: PMC10090396 DOI: 10.3389/fcimb.2023.1146070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Microbial cell individuality is receiving increasing interest in the scientific community. Individual cells within clonal populations exhibit noticeable phenotypic heterogeneity. The advent of fluorescent protein technology and advances in single-cell analysis has revealed phenotypic cell variant in bacterial populations. This heterogeneity is evident in a wide range of phenotypes, for example, individual cells display variable degrees of gene expression and survival under selective conditions and stresses, and can exhibit differing propensities to host interactions. Last few years, numerous cell sorting approaches have been employed for resolving the properties of bacterial subpopulations. This review provides an overview of applications of cell sorting to analyze Salmonella lineage-specific traits, including bacterial evolution studies, gene expression analysis, response to diverse cellular stresses and characterization of diverse bacterial phenotypic variants.
Collapse
Affiliation(s)
- Rocío Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C., Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- *Correspondence: María Antonia Sánchez-Romero,
| |
Collapse
|
2
|
Ghaleh HEG, Shahriary A, Izadi M, Farzanehpour M. Advances in early diagnosis of cervical cancer based on biosensors. Biotechnol Bioeng 2022; 119:2305-2312. [DOI: 10.1002/bit.28149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and poisonings instituteBaqiyatallah University of Medical SciencesTehranIran
| | - Morteza Izadi
- Health Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical sciencesTehranIran
| |
Collapse
|
3
|
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. BIOSENSORS 2022; 12:385. [PMID: 35735533 PMCID: PMC9221076 DOI: 10.3390/bios12060385] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 05/17/2023]
Abstract
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.
Collapse
Affiliation(s)
- Emre Ozan Polat
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey; (M.M.C.); (A.F.T.); (E.B.G.); (B.Ö.U.); (T.A.); (A.K.); (H.H.); (S.B.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
State of the Art in Smart Portable, Wearable, Ingestible and Implantable Devices for Health Status Monitoring and Disease Management. SENSORS 2022; 22:s22114228. [PMID: 35684847 PMCID: PMC9185336 DOI: 10.3390/s22114228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023]
Abstract
Several illnesses that are chronic and acute are becoming more relevant as the world's aging population expands, and the medical sector is transforming rapidly, as a consequence of which the need for "point-of-care" (POC), identification/detection, and real time management of health issues that have been required for a long time are increasing. Biomarkers are biological markers that help to detect status of health or disease. Biosensors' applications are for screening for early detection, chronic disease treatment, health management, and well-being surveillance. Smart devices that allow continual monitoring of vital biomarkers for physiological health monitoring, medical diagnosis, and assessment are becoming increasingly widespread in a variety of applications, ranging from biomedical to healthcare systems of surveillance and monitoring. The term "smart" is used due to the ability of these devices to extract data with intelligence and in real time. Wearable, implantable, ingestible, and portable devices can all be considered smart devices; this is due to their ability of smart interpretation of data, through their smart sensors or biosensors and indicators. Wearable and portable devices have progressed more and more in the shape of various accessories, integrated clothes, and body attachments and inserts. Moreover, implantable and ingestible devices allow for the medical diagnosis and treatment of patients using tiny sensors and biomedical gadgets or devices have become available, thus increasing the quality and efficacy of medical treatments by a significant margin. This article summarizes the state of the art in portable, wearable, ingestible, and implantable devices for health status monitoring and disease management and their possible applications. It also identifies some new technologies that have the potential to contribute to the development of personalized care. Further, these devices are non-invasive in nature, providing information with accuracy and in given time, thus making these devices important for the future use of humanity.
Collapse
|
5
|
Kazemi Y, Dehghani S, Nosrati R, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Recent progress in the early detection of cancer based on CD44 biomarker; nano-biosensing approaches. Life Sci 2022; 300:120593. [PMID: 35500679 DOI: 10.1016/j.lfs.2022.120593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023]
Abstract
CD44 is a cell matrix adhesion molecule overexpressed on the cell surfaces of the major cancers. CD44 as a cancer-related biomarker has an essential role in the invasion and metastasis of cancer. The detection and quantification of CD44 can provide essential information useful for clinical cancer diagnosis. In this regard, biosensors with sensitive and specific properties, give prominence to the development of CD44 detection platforms. To date, various aptamer-based sensitive-enhancers together with nanoparticles (NPs) have been combined into the biosensors systems to provide an innovative biosensing method (aptasensors/nano-aptasensors) with substantially improved detection limit. This review article discusses the recent advances in the field of biosensors, nanobiosensors, and aptasensors for the quantitative determination of CD44 and the detection of CD44-expressing cancer cells.
Collapse
Affiliation(s)
- Youkabed Kazemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
|
8
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|
9
|
Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071184] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A microbial fuel cell (MFC) is a type of bio-electrochemical system with novel features, such as electricity generation, wastewater treatment, and biosensor applications. In recent years, progressive trends in MFC research on its chemical, electrochemical, and microbiological aspects has resulted in its noticeable applications in the field of sensing. This review was consequently aimed to provide an overview of the most interesting new applications of MFCs in sensors, such as providing the required electrical current and power for remote sensors (energy supply device for sensors) and detection of pollutants, biochemical oxygen demand (BOD), and specific DNA strands by MFCs without an external analytical device (self-powered biosensors). Moreover, in this review, procedures of MFC operation as a power supply for pH, temperature, and organic loading rate (OLR) sensors, and also self-powered biosensors of toxicity, pollutants, and BOD have been discussed.
Collapse
|
10
|
Oliverio M, Perotto S, Messina GC, Lovato L, De Angelis F. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29394-29411. [PMID: 28796479 PMCID: PMC5593307 DOI: 10.1021/acsami.7b01583] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
In an ideal plasmonic surface sensor, the bioactive area, where analytes are recognized by specific biomolecules, is surrounded by an area that is generally composed of a different material. The latter, often the surface of the supporting chip, is generally hard to be selectively functionalized, with respect to the active area. As a result, cross talks between the active area and the surrounding one may occur. In designing a plasmonic sensor, various issues must be addressed: the specificity of analyte recognition, the orientation of the immobilized biomolecule that acts as the analyte receptor, and the selectivity of surface coverage. The objective of this tutorial review is to introduce the main rational tools required for a correct and complete approach to chemically functionalize plasmonic surface biosensors. After a short introduction, the review discusses, in detail, the most common strategies for achieving effective surface functionalization. The most important issues, such as the orientation of active molecules and spatial and chemical selectivity, are considered. A list of well-defined protocols is suggested for the most common practical situations. Importantly, for the reported protocols, we also present direct comparisons in term of costs, labor demand, and risk vs benefit balance. In addition, a survey of the most used characterization techniques necessary to validate the chemical protocols is reported.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health
Science, University Magna Graecia of Catanzaro, Viale Europa−Loc. Germaneto, 88100 Catanzaro, Italy
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Sara Perotto
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department of Informatics,
Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli Studi di Genova, Via Balbi 5, 16126 Genova, Italy
| | | | - Laura Lovato
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
11
|
Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed Pharmacother 2017; 93:737-745. [PMID: 28700978 DOI: 10.1016/j.biopha.2017.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/18/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Nowadays, all people are at risk of infectious diseases that are mainly caused by bacteria causing infection. There is a permanent demand for an appropriate detection method that is affordable, practical, careful, rapid, sensitive, efficient and economical. Aptamers are single stranded DNA or RNA oligonucleotides, which can be recognized specifically and bind to their target molecules and also, be exploited in diagnostic applications. Recently, aptamer-based systems have offered great potentials in applications for the recognition of several important bacterial pathogens from clinical and food specimens. There are several reports appraising the diagnostic applicability of aptamer-based systems for the detection of pathogens. As for its excellent sensitivity, as well as its rapid and efficient detectability, this technique may be practical to indicate bacterial targets with less sample size and may consume less time than traditional methods These systems offer a promising approach for the sensitive and quick detection of food-borne and clinical agents. This review provides an overview of aptamer-based methods as a novel approach for detecting bacterial pathogens.
Collapse
|
12
|
Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B. Aptamer-Based Technologies in Foodborne Pathogen Detection. Front Microbiol 2016; 7:1426. [PMID: 27672383 PMCID: PMC5018482 DOI: 10.3389/fmicb.2016.01426] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.
Collapse
Affiliation(s)
- Jun Teng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Fang Yuan
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Yingwang Ye
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Lei Zheng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Li Yao
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Feng Xue
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Wei Chen
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Baoguang Li
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MDUSA
| |
Collapse
|
13
|
Romero-Arcos M, Garnica-Romo MG, Martinez-Flores HE, Vázquez-Marrufo G, Ramírez-Bon R, González-Hernández J, Barbosa-Cánovas GV. Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9129-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Wangmaung N, Chomean S, Promptmas C, Mas-oodi S, Tanyong D, Ittarat W. Silver quartz crystal microbalance for differential diagnosis of Plasmodium falciparum and Plasmodium vivax in single and mixed infection. Biosens Bioelectron 2014; 62:295-301. [DOI: 10.1016/j.bios.2014.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/01/2022]
|
15
|
Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. BIOMED RESEARCH INTERNATIONAL 2014; 2014:180323. [PMID: 25485279 PMCID: PMC4251647 DOI: 10.1155/2014/180323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.
Collapse
|
16
|
Woappi YL, Jangiti R, Singh OV. Synthetic immunosurveillance systems: nanodevices to monitor physiological events. Biosens Bioelectron 2014; 61:152-64. [PMID: 24874659 PMCID: PMC7065416 DOI: 10.1016/j.bios.2014.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
Abstract
The field of nanotechnology has recently seen vast advancements in its applications for therapeutic strategy. This technological revolution has led way to nanomedicine, which spurred the development of clever drug delivery designs and ingenious nanovehicles for the monitoring of cellular events in vivo. The clinical implementations of this technology are innumerable and have demonstrated utility as diagnostic tools and fortifying machineries for the mammalian immune system. Recently engineered viral vectors and multi-subunit packaging RNAs have verified stable enough for long-term existence in the physiological environment and therefore reveal unique potential as artificial immunosurveillance devices. Physiological and pathological events recorded by nanodevices could help develop "biocatalogs" of patients' infection history, frequency of disease, and much more. In this article, we introduce a novel design concept for a multilayer synthetic immune network parallel to the natural immune system; an artificial network of continuously patrolling nanodevices incorporated in the blood and lymphatic systems, and adapted for molecular event recording, anomaly detection, drug delivery, and gene silencing. We also aim to discuss the approaches and advances recently reported in nanomedicine, especially as it pertains to promising viral and RNA-based nanovehicles and their prospective applications for the development of a synthetic immunosurveillance system (SIS). Alternative suggestions and limitations of these technologies are also discussed.
Collapse
Affiliation(s)
- Yvon L Woappi
- Division of Biological and Health Sciences, 300 Campus Drive, University of Pittsburgh, Bradford, PA 16701, USA
| | - Rahul Jangiti
- Division of Physical and Computational Sciences, 300 Campus Drive, University of Pittsburgh, Bradford, PA 16701, USA
| | - Om V Singh
- Division of Biological and Health Sciences, 300 Campus Drive, University of Pittsburgh, Bradford, PA 16701, USA.
| |
Collapse
|
17
|
Sohrabi N, Valizadeh A, Farkhani SM, Akbarzadeh A. Basics of DNA biosensors and cancer diagnosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:654-63. [DOI: 10.3109/21691401.2014.976707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Mahadhy A, Ståhl-Wernersson E, Mattiasson B, Hedström M. Use of a capacitive affinity biosensor for sensitive and selective detection and quantification of DNA-A model study. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:42-48. [PMID: 28626647 PMCID: PMC5466103 DOI: 10.1016/j.btre.2014.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/27/2022]
Abstract
A capacitive DNA-sensor model system was used to monitor the capture of complementary single-stranded DNAs. The sensor chip consisted of a gold electrode, which was carefully insulated with a polytyramine layer and covalently tagged with 25-mer oligo-C. As low as 10-11 moles per liter of target oligo-G could be detected by injecting 250 μL of sample. Elevated temperature was used to reduce non-specific hybridization. Less than 10% of non-target 25-mer oligo-T interacted nonspecifically with the oligo-C probes when hybridization process was performed at 50 °C. Studying the relationship of length of the analyte to the signal strength, the output from the capacitive DNA-sensor increased to almost the double; from 50 to 88-nF cm-2, when a 25-mer oligo-G was used instead of a 15-mer. By sandwich hybridization at room temperature, it was possible to further increase the signal, from 78-nF cm-2 for the target 50-mer oligo-G alone, to 114-nF cm-2.
Collapse
Affiliation(s)
| | | | | | - Martin Hedström
- Department of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
19
|
Moon JH, Kim G, Park SB, Lim J, Mo C. The Importance of FACS Analysis in the Development of Aptamers Specific to Pathogens. ACTA ACUST UNITED AC 2014. [DOI: 10.5307/jbe.2014.39.2.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Ermini ML, Mariani S, Scarano S, Minunni M. Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosens Bioelectron 2014; 61:28-37. [PMID: 24841091 DOI: 10.1016/j.bios.2014.04.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a main goal in theranostics, aiming to the development of therapies based on personalized medicine. In this review, Surface Plasmon Resonance (SPR) and Surface Plasmon Resonance imaging (SPRi) biosensors applied to the recognition of SNPs were reviewed, since these technologies are emerging in clinical diagnosis as powerful tools thanks to their analytical features, mainly the real-time and label-free monitoring based on array format for parallel analysis. Since the literature is heterogeneous, a critical classification and a systemic comparison of the analytical performances of published methods were here reviewed on the basis of the analytical strategy and the assay design. In particular, the use of helping agents (i.e. proteins, nanoparticles (NPs), intercalating agents) or artificial DNAs, often coupled to SPR to achieve allele discrimination and/or enhanced sensitivity, were here revised and classified. Finally, the real suitability of SPR biosensors to clinical diagnostics for SNPs detection was addressed by comparing their features and performances with those of other biosensors based on other techniques (e.g. electrochemical biosensors).
Collapse
Affiliation(s)
- Maria Laura Ermini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Mariani
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Simona Scarano
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
21
|
Habib-Ullah S, Fei D, Ge Y. Nanotechnology in Advanced Medical Devices. Nanomedicine (Lond) 2014. [DOI: 10.1007/978-1-4614-2140-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
|
23
|
A comparison of four protocols for the immobilization of an aptamer on graphite composite electrodes. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1126-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Arugula MA, Zhang Y, Simonian AL. Biosensors as 21st Century Technology for Detecting Genetically Modified Organisms in Food and Feed. Anal Chem 2013; 86:119-29. [DOI: 10.1021/ac402898j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mary A. Arugula
- Department of Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Yuanyuan Zhang
- Department of Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Alex L. Simonian
- Department of Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
25
|
Pizzoni D, Mascini M, Lanzone V, Del Carlo M, Di Natale C, Compagnone D. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach. Biosens Bioelectron 2013; 52:247-54. [PMID: 24060973 DOI: 10.1016/j.bios.2013.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/12/2013] [Accepted: 08/22/2013] [Indexed: 01/11/2023]
Abstract
Virtual and experimental affinity binding properties of 5 different peptides (cysteinylglycine, glutathione, Cys-Ile-His-Asn-Pro, Cys-Ile-Gln-Pro-Val, Cys-Arg-Gln-Val-Phe) vs. 14 volatile compounds belonging to relevant chemical classes were evaluated. The peptides were selected in order to have a large variability in physicochemical characteristics (including length). In virtual screening a rapid and cost-effective computational methodology for predicting binding scores of small peptide receptors vs. volatile compounds is proposed. Flexibility was considered for both ligands and peptides and each peptide conformer was treated as a possible receptor, generating a dedicated box and then running a docking process vs. all possible conformers of the 14 volatile compounds. The 5 peptides were covalently bound to gold nanoparticles and deposited onto 20 MHz quartz crystal microbalances to realize gas sensors. Gas sensing confirmed that each of the peptide conferred to the gold nanoparticles a particular selectivity pattern able to discriminate the 14 volatile compounds. The largest response was obtained for the pentapeptides Cys-Ile-His-Asn-Pro and Cys-Ile-Gln-Pro-Val while low response was achieved for the dipeptide. The comparative study, carried using a two-tailed T test, demonstrated that virtual screening was able to predict reliably the sensing ability of the pentapeptides. The dipeptide receptor exhibited 29% of virtual-experimental matching vs. 71% of glutathione and up to 93% for the pentapeptides. This virtual screening approach was proved to be a promising tool in predicting the behaviour of sensors array for gas detection.
Collapse
Affiliation(s)
- Daniel Pizzoni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023 Teramo, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Moon J, Kim G, Lee S, Park S. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. J Microbiol Methods 2013; 95:162-6. [PMID: 23978634 DOI: 10.1016/j.mimet.2013.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 11/26/2022]
Abstract
Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized.
Collapse
Affiliation(s)
- Jihea Moon
- Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441-707, South Korea
| | | | | | | |
Collapse
|
27
|
Huang HT, Ger TR, Lin YH, Wei ZH. Single cell detection using a magnetic zigzag nanowire biosensor. LAB ON A CHIP 2013; 13:3098-3104. [PMID: 23752134 DOI: 10.1039/c3lc50457c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell. Magnetoresistance responses were measured in different magnetic field directions, and the results showed that this nanowire device can be used for multi-directional detection. It was observed that the highest switching field variation occurred in a 150 nm wide nanowire when the field was perpendicular to the substrate plane. On the other hand, the highest magnetoresistance ratio variation occurred in a 800 nm wide nanowire also when the field was perpendicular to the substrate plane. Besides, the trench-structured substrate proposed in this study can fix the magnetic cell to the sensor in a fluid environment, and the stray field generated by the corners of the magnetic zigzag nanowires has the function of actively attracting the magnetic cells for detection.
Collapse
Affiliation(s)
- Hao-Ting Huang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
28
|
Ittarat W, Chomean S, Sanchomphu C, Wangmaung N, Promptmas C, Ngrenngarmlert W. Biosensor as a molecular malaria differential diagnosis. Clin Chim Acta 2013; 419:47-51. [PMID: 23391603 DOI: 10.1016/j.cca.2013.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/09/2013] [Accepted: 01/26/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND In malaria diagnosis, specific gene identification is required in cases with subclinical infection or cases with mixed infection. This study applied the biosensor technology based on quartz crystal microbalance (QCM) to differentially diagnose the most common and severe malaria, Plasmodium falciparum and Plasmodium vivax. METHOD The QCM surface was immobilized with malaria biotinylated probe. Specific DNA fragments of malaria-infected blood were amplified. Hybridization between the amplified products and the immobilized probe resulted in quartz frequency shifts which were measured by an in-house frequency counter. Diagnostic potency and clinical application of the malaria QCM were evaluated. RESULT The malaria QCM could differentially diagnose blood infected with P. falciparum from that infected with P. vivax (p-value<0.05). No cross reaction with human DNA indicated the QCM specificity. Clinical application was evaluated using 30 suspected samples. Twenty-seven samples showed consistent diagnosis of the QCM with microscopy and rapid diagnosis tests (RDTs). Three samples reported "no malaria found" by microscopy showed P. falciparum infection by both QCM and the RDTs. CONCLUSION The malaria QCM was developed with high accuracy, specificity, sensitivity, stability and cost-effectiveness. It is field applicable in malaria endemic area and might be a promising point of care testing.
Collapse
Affiliation(s)
- Wanida Ittarat
- Department of Clinical Microscopy, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
Biosensors - classification, characterization and new trendsBiosensors represent promising analytical tools applicable in areas such as clinical diagnosis, food industry, environment monitoring and in other fields, where rapid and reliable analyses are needed. Some biosensors were successfully implemented in the commercial sphere, but majority needs to be improved in order to overcome some imperfections. This review covers the basic types, principles, constructions and use of biosensors as well as new trends used for their fabrication.
Collapse
|
31
|
Nam K, Eom K, Yang J, Park J, Lee G, Jang K, Lee H, Lee SW, Yoon DS, Lee CY, Kwon T. Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33688j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Abbaspour A, Noori A. A cyclodextrin host–guest recognition approach to a label-free electrochemical DNA hybridization biosensor. Analyst 2012; 137:1860-5. [DOI: 10.1039/c2an15683k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Castillo G, Lamberti I, Mosiello L, Hianik T. Impedimetric DNA Aptasensor for Sensitive Detection of Ochratoxin A in Food. ELECTROANAL 2011. [DOI: 10.1002/elan.201100485] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Chua A, Yean CY, Ravichandran M, Lim B, Lalitha P. A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens Bioelectron 2011; 26:3825-31. [DOI: 10.1016/j.bios.2011.02.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/26/2022]
|
35
|
GMR sensors: magnetoresistive behaviour optimization for biological detection by means of superparamagnetic nanoparticles. Biosens Bioelectron 2011; 26:3705-9. [PMID: 21382706 DOI: 10.1016/j.bios.2011.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/05/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
Abstract
An immunomagnetic method for the selective and quantitative detection of biological species by means of a magnetoresistive biosensor and superparamagnetic particles has been optimized. In order to achieve this, a giant magnetoresistive [Co (5.10nm)/Cu (2.47 nm)](20) multilayer structure has been chosen as the sensitive material, showing a magnetoresistance of 3.60% at 215 Oe and a sensitivity up to 0.19 Ω/Oe between 145 Oe and 350 Oe. The outward gold surface of the sensor is biofunctionalized with a Self-Assembled Monolayer (SAM). In addition, three different types of magnetic labels have been tested. 2 μm diameter magnetic carriers (7.68 pg ferrite/particle) have shown the best response and they have induced a shift in the magnetoresistive hysteresis loops up to 9% at 175 Oe.
Collapse
|
36
|
Chomean S, Potipitak T, Promptmas C, Ittarat W. Quartz crystal microbalance-based biosensor for the detection of α-thalassemia 1 (SEA deletion). Clin Chem Lab Med 2011; 48:1247-54. [PMID: 20578968 DOI: 10.1515/cclm.2010.258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND DNA piezoelectric biosensors have become a promising tool in molecular medicine since they do not require any label or staining. Here, a DNA piezoelectric biosensor based on a quartz crystal microbalance (QCM) was created to identify abnormal genes causing α-thalassemia 1 (SEA deletion). METHODS The functionalized gold electrode of the quartz crystal was coated with avidin and the biotinylated DNA probe was attached. The target gene causing α-thalassemia 1 was amplified and hybridized with the immobilized probe. DNA hybridization was indicated by changes in the quartz resonance frequencies. Diagnostic ability of the new α-thalassemia 1 biosensor was validated using both known and unknown blood samples. Specificity was tested using samples of β-thalassemia and α-thalassemia 2. Stability of the sensor was also evaluated. RESULTS The new biosensor could clearly identify α-thalassemia 1 (SEA deletion), both carrier and disease states, from the normal genotype. Identification accuracy was compatible to the standard gel electrophoresis. It was specific only to α-thalassemia 1 since no cross reaction was found with β-thalassemia and α-thalassemia 2. The sensor could be kept at room temperature up to 6 months with consistent identification accuracy. CONCLUSIONS The label free QCM based biosensor was successfully developed to diagnose an abnormal human globin gene causing α-thalassemia 1 (SEA deletion). Its accuracy, specificity and sensitivity were comparable to the standard method. Its stable diagnostic potency up to 6 months implied its field application in thalassemic control program.
Collapse
Affiliation(s)
- Sirinart Chomean
- Faculty of Medical Technology, Department of Clinical Microscopy, Mahidol University, Nakhon Pathom, Thailand
| | | | | | | |
Collapse
|
37
|
Tigli O, Bivona L, Berg P, Zaghloul ME. Fabrication and Characterization of a Surface-Acoustic-Wave Biosensor in CMOS Technology for Cancer Biomarker Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2010; 4:62-73. [PMID: 23853310 DOI: 10.1109/tbcas.2009.2033662] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Design, fabrication, and characterization of a novel surface acoustic wave (SAW) biosensor in complementary metal-oxide semiconductor (CMOS) technology are introduced. The biosensor employs a streptavidin/biotin-based five-layer immunoassay for detecting a prominent breast cancer biomarker, mammoglobin (hMAM). There is a growing demand to develop a sensitive and specific assay to detect biomarkers in serum that could be used in the early detection of breast cancer, determining prognosis and monitoring therapy. CMOS-SAW devices present a viable alternative to the existing biosensor technologies by providing higher sensitivity levels and better performance at low costs. Two architectures (circular and rectangular) were developed and respective tests were presented for performance comparison. The sensitivities of the devices were analyzed primarily based on center frequency shifts. A frequency sensitivity of 8.704 pg/Hz and a mass sensitivity of 2810.25 m(2) /kg were obtained. Selectivity tests were carried out against bovine serum albumin. Experimental results indicate that it is possible to attach cancer biomarkers to functionalized CMOS-SAW sensor surfaces and selectively detect hMAM antigens with improved sensitivities, lowered costs, and increased repeatability of fabrication.
Collapse
|
38
|
Ananthanawat C, Vilaivan T, Mekboonsonglarp W, Hoven VP. Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens Bioelectron 2009; 24:3544-9. [PMID: 19515551 DOI: 10.1016/j.bios.2009.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/23/2009] [Accepted: 05/11/2009] [Indexed: 11/25/2022]
Abstract
Thiolated pyrrolidinyl peptide nucleic acids (HS-PNAs) bearing d-prolyl-2-aminocyclopentanecarboxylic acid (ACPC) backbones with different lengths and types of thiol modifiers were synthesized and then characterized by MALDI-TOF mass spectrometry. These HS-PNAs were immobilized on gold-coated glass by self-assembled monolayer (SAM) formation via S atom linkage for the detection of DNA hybridization using surface plasmon resonance (SPR). The amount and the stability of the immobilized HS-PNAs, as well as the effects of spacer and blocking thiol on DNA hybridization efficiency, were determined. SPR results indicated that the hybridization efficiency was enhanced when the distance between the PNA portion and the thiol terminal was increased and/or when blocking thiol was used following the HS-PNA immobilization. The immobilized HS-PNA could discriminate between fully complementary DNA from one or two base mismatched DNA with a relatively high degree of mismatch discrimination (>45%) in PBS buffer at 25 degrees C. The lowest DNA concentration at which reliable discrimination between fully complementary and single mismatched DNA could still occur was at about 0.2 microM, which is equivalent to 10 pmol of DNA. This research demonstrates that using these novel thiolated PNAs in combination with the SPR technique offers a direct, rapid and non-label based method that could potentially be applied for the analysis of genomic or PCR-amplified DNA in the future.
Collapse
Affiliation(s)
- Cheeraporn Ananthanawat
- Program of Macromolecular Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
39
|
Wang Y, Chen M, Zhang L, Ding Y, Luo Y, Xu Q, Shi J, Cao L, Fu W. Rapid detection of human papilloma virus using a novel leaky surface acoustic wave peptide nucleic acid biosensor. Biosens Bioelectron 2009; 24:3455-60. [PMID: 19487115 DOI: 10.1016/j.bios.2009.04.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/24/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
A novel leaky surface acoustic wave (LSAW) bis-peptide nucleic acid (bis-PNA) biosensor with double two-port resonators has been constructed successfully for the quantitative detection of human papilloma virus (HPV). The bis-PNA probe can directly detect HPV genomic DNA without polymerase chain reaction (PCR) amplification, and it can bind to the target DNA sequences more effectively and specifically than a DNA probe. When the concentrations varied from 1 pg/L to 1000 microg/L, with 100 microg/L being the optimal, a typical linearity was found between the quantity of target and the phase shifts. The detection limit was 1.21 pg/L and the clinical specificity was 97.22% of that of real-time PCR. The bis-PNA probe was able to distinguish sequences that differ only in one base. Both the intraassay and interassay coefficients of variance (CVs) were <10%, and the biosensor can be regenerated for ten times without appreciable loss of activity. Therefore, this technical platform of LSAW biosensor can be applied to clinical samples for direct HPV detection.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dipstick-type biosensor for visual detection of DNA with oligonucleotide-decorated colored polystyrene microspheres as reporters. Biosens Bioelectron 2008; 24:1811-5. [PMID: 18951010 DOI: 10.1016/j.bios.2008.08.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/31/2008] [Accepted: 08/28/2008] [Indexed: 11/22/2022]
Abstract
In recent years, there is a continuously growing interest in the development of biosensors for rapid, simple and inexpensive DNA tests suitable for the small laboratory or for on-site testing. Detection is accomplished through electrochemical, optical or gravimetric transduction. We report on the development of disposable dipstick-type DNA biosensors that employ oligonucleotide-decorated colored polystyrene microspheres as reporters and enable visual detection of DNA sequences without the use of instrumentation. The biosensors have been designed to detect DNA molecules that contain both, a biotin moiety and a segment that is complementary to the oligonucleotide attached on the surface of blue or red microspheres. Capture of the hybrids by immobilized streptavidin at the test zone results in the formation of a colored line. The biosensors were applied to: (a) detection of single-stranded DNA, (b) detection of PCR-amplified double-stranded DNA and (c) genotyping of single nucleotide polymorphisms (SNP). The results were compared with sensors based on gold nanoparticle reporters. It is also demonstrated that the microspheres offer the potential for multicolor detection of specific DNA sequences.
Collapse
|
41
|
Detection and haplotype differentiation of Southeast Asian alpha-thalassemia using polymerase chain reaction and a piezoelectric biosensor immobilized with a single oligonucleotide probe. Transl Res 2008; 151:246-54. [PMID: 18433706 DOI: 10.1016/j.trsl.2007.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/23/2022]
Abstract
DNA-based diagnosis of alpha-thalassemias routinely relies on polymerase chain reaction (PCR) and gel electrophoresis. Here, we developed a new procedure for the detection and haplotype differentiation of Southeast Asian (SEA) alpha-thalassemia using a 3-primer system for PCR coupling with a DNA-based piezoelectric biosensor. PCR products amplified from genomic DNA were differentiated directly by using a quartz crystal microbalance immobilized with a single oligonucleotide probe. The frequency changes after hybridization of the PCR products amplified from a representative sample of normal alpha-globin, SEA alpha-thalassemia heterozygote, and homozygote were 206+/-11, 256+/-5, and 307+/-3 Hz, respectively. The fabricated biosensor was evaluated through an examination of 18 blind specimens. It could accurately discriminate between normal and SEA alpha-thalassemic samples, which suggests that this biosensor system is a promising alternative technique to detect SEA alpha-thalassemia because of its specificity and less hazardous exposure as compared with conventional methods.
Collapse
|
42
|
Elenis DS, Kalogianni DP, Glynou K, Ioannou PC, Christopoulos TK. Advances in molecular techniques for the detection and quantification of genetically modified organisms. Anal Bioanal Chem 2008; 392:347-54. [DOI: 10.1007/s00216-008-1868-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/09/2008] [Indexed: 11/29/2022]
|
43
|
Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta 2008; 609:139-59. [DOI: 10.1016/j.aca.2007.12.035] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/21/2022]
|
44
|
Vagin MY, Trashin SA, Karyakin AA, Mascini M. Label-free detection of DNA hybridization at a liquid|liquid interface. Anal Chem 2008; 80:1336-40. [PMID: 18205333 DOI: 10.1021/ac701923c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel electrochemical approach for label-free detection of DNA primary sequence has been proposed. The flow of nonelectroactive ions across a liquid|liquid interface was used as an electrochemical probe for detection of DNA hybridization. Disposable graphite screen-printed electrodes shielded with a thin layer of inert polymer plasticized with water-immiscible polar organic solvent were modified by probe oligonucleotide and used as a DNA sensor. The specific DNA coupling has been detected with impedance spectroscopy by decrease of ion-transfer resistance. The detection limit was of 10-8 M of target oligonucleotide. The reported sensor was suitable for discrimination of a single mismatch oligonucleotide from the full complementary one. The reported DNA sensor was advantageous over known physicochemical approaches, providing the most significant changes in the measured parameters.
Collapse
Affiliation(s)
- Mikhail Yu Vagin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Lenin's Hills, Moscow, Russia.
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Audrey Sassolas
- Laboratoire de Génie Enzymatique et Biomoléculaire, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France, UMR5246, Centre National de La Recherche Scientifque, Villeurbanne F-69622, France, Université de Lyon, Lyon F-69622, France, Université Lyon 1, Lyon F-69622, France, Institut National des Sciences Appliquées de Lyon, École d'Ingénieurs, Villeurbanne F-69621, France, and École Supérieure Chimie Physique Électronique de Lyon,
| | - Béatrice D. Leca-Bouvier
- Laboratoire de Génie Enzymatique et Biomoléculaire, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France, UMR5246, Centre National de La Recherche Scientifque, Villeurbanne F-69622, France, Université de Lyon, Lyon F-69622, France, Université Lyon 1, Lyon F-69622, France, Institut National des Sciences Appliquées de Lyon, École d'Ingénieurs, Villeurbanne F-69621, France, and École Supérieure Chimie Physique Électronique de Lyon,
| | - Loïc J. Blum
- Laboratoire de Génie Enzymatique et Biomoléculaire, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France, UMR5246, Centre National de La Recherche Scientifque, Villeurbanne F-69622, France, Université de Lyon, Lyon F-69622, France, Université Lyon 1, Lyon F-69622, France, Institut National des Sciences Appliquées de Lyon, École d'Ingénieurs, Villeurbanne F-69621, France, and École Supérieure Chimie Physique Électronique de Lyon,
| |
Collapse
|
46
|
Dell'Atti D, Zavaglia M, Tombelli S, Bertacca G, Cavazzana AO, Bevilacqua G, Minunni M, Mascini M. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains. Clin Chim Acta 2007; 383:140-6. [PMID: 17573061 DOI: 10.1016/j.cca.2007.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/11/2007] [Accepted: 05/11/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human Papilloma Virus (HPV) is a DNA virus belonging to the Papovavirus family. Genital HPV types have been subdivided into medium-low risk, and high-risk (HPV 16 and 18), frequently associated with cervical cancer. Three DNA-based piezoelectric biosensors were here developed for a quick detection and genotyping of HPV. METHODS We developed a method for the detection and genotyping of HPV in human cervical scraping samples based on coupling DNA piezoelectric sensors with Polymerase Chain Reaction (PCR). The novelty of this work was the design and immobilisation of a degenerate probe (chosen in a conserved region of the viral genome) for the simultaneous detection of 16 virus strains and of two specific probes (chosen in a less-conserved region of the viral genome) for genotyping. RESULTS The three biosensors were optimised with synthetic oligonucleotides with good reproducibility (HPVdeg CV% (av) 9%, HPV16 CV%(av) 9%; HPV18 CV%(av) 11%) with a detection limit of 50 nM. Cervical scraping samples after PCR amplification (in 40-200 nM range), were tested without the need of label with high selectivity and reproducibility. The results were in agreement with a reference method used in routinary analysis. CONCLUSION Piezoelectric biosensors have proven to be suitable for detection and genotyping of HPV.
Collapse
Affiliation(s)
- Daniela Dell'Atti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bini A, Minunni M, Tombelli S, Centi S, Mascini M. Analytical performances of aptamer-based sensing for thrombin detection. Anal Chem 2007; 79:3016-9. [PMID: 17338547 DOI: 10.1021/ac070096g] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aptamer-based assays represent a modern and attractive approach in bioanalytical chemistry. The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to critically evaluate all the parameters that can influence the sensor performances by using the thrombin aptamer immobilized onto piezoelectric quartz crystals. The optimization of the immobilization and the binding protocol was of paramount importance, and improvements in analytical performances could be obtained by optimizing simple steps in immobilization and assay conditions. Moreover, the work demonstrated the possibility of using aptamer-based sensors in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.
Collapse
|
48
|
Cooper MA, Singleton VT. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 2007; 20:154-84. [PMID: 17582799 DOI: 10.1002/jmr.826] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The widespread exploitation of biosensors in the analysis of molecular recognition has its origins in the mid-1990s following the release of commercial systems based on surface plasmon resonance (SPR). More recently, platforms based on piezoelectric acoustic sensors (principally 'bulk acoustic wave' (BAW), 'thickness shear mode' (TSM) sensors or 'quartz crystal microbalances' (QCM)), have been released that are driving the publication of a large number of papers analysing binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights salient theoretical and practical aspects of the technologies that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and lipidic and polymeric interfaces. Key differentiators between optical and acoustic sensing modalities are also reviewed.
Collapse
Affiliation(s)
- Matthew A Cooper
- Akubio Ltd., 181 Cambridge Science Park, Cambridge, United Kingdom, UK.
| | | |
Collapse
|