1
|
Caruffo M, Vidal S, Santis L, Siel D, Pérez O, Huenchullan PR, Sáenz L. Effectiveness of a proteoliposome-based vaccine against salmonid rickettsial septicaemia in Oncorhynchus mykiss. Vet Res 2021; 52:111. [PMID: 34425904 PMCID: PMC8382212 DOI: 10.1186/s13567-021-00982-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
Salmonid rickettsial septicaemia (SRS) is a contagious disease caused by Piscirickettsia salmonis, an intracellular bacterium. SRS causes an estimated economic loss of $700 million USD to the Chilean industry annually. Vaccination and antibiotic therapy are the primary prophylactic and control measures used against SRS. Unfortunately, commercially available SRS vaccines have not been shown to have a significant effect on reducing mortality. Most vaccines contain whole inactivated bacteria which results in decreased efficacy due to the limited ability of the vaccine to evoke a cellular mediated immune response that can eliminate the pathogen or infected cells. In addition, SRS vaccine efficacy has been evaluated primarily with Salmo salar (Atlantic salmon). Vaccine studies using Oncorhynchus mykiss (rainbow trout) are scarce, despite SRS being the leading cause of infectious death for this species. In this study, we evaluate an injectable vaccine based on P. salmonis proteoliposome; describing the vaccine security profile, capacity to induce specific anti-P. salmonis IgM and gene expression of immune markers related to T CD8 cell-mediated immunity. Efficacy was determined by experimental challenge with P. salmonis intraperitoneally. Our findings indicate that a P. salmonis proteoliposome-based vaccine is able to protect O. mykiss against challenge with a P. salmonis Chilean isolate and causes a specific antibody response. The transcriptional profile suggests that the vaccine is capable of inducing cellular immunity. This study provides new insights into O. mykiss protection and the immune response induced by a P. salmonis proteoliposome-based vaccine.
Collapse
Affiliation(s)
- Mario Caruffo
- NGEN LAB S.A, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.,Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Animales, Universidad de Chile, Santiago, Chile
| | - Sonia Vidal
- Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Animales, Universidad de Chile, Santiago, Chile
| | - Leonardo Santis
- Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Animales, Universidad de Chile, Santiago, Chile
| | - Daniela Siel
- Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Animales, Universidad de Chile, Santiago, Chile
| | - Oliver Pérez
- Instituto de Ciencias Básicas Y Preclínicas "Victoria de Girón", Universidad de Ciencias Médicas de La Habana, Havana, Cuba
| | | | - Leonardo Sáenz
- Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Animales, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
2
|
|
3
|
Tamargo SB, Bui Thanh T, Pérez M, Otero O, Oliva HR, Falero G, Pérez JL, Cedré MB, Okuskhanova E, Thiruvengadam M, Shariati MA, Sierra GVG. Nanocochleates containing N-Octylglicoside extracted Vibrio cholerae antigens elicited high vibriocidal antibodies titers after intragastric immunization in a mice model. Microb Pathog 2021; 156:104902. [PMID: 33930421 DOI: 10.1016/j.micpath.2021.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 09/30/2022]
Abstract
Biological detergents are used in research laboratories, to extract or solubilize proteins from cell membranes. In order to evaluate the ability to extract antigens from the bacterial cell surface of the wild Vibrio cholerae strain C7258 and study their immunogenic potential by forming proteoliposomes and cochleate and preserving their immunogenicity, the non-ionic detergent, n-Octylglucoside (n-OG), and the Zwitterionic detergent (3-cholamidopropyl dimethylammonio 1-propanesulfonate; CHAPS) were tested in concentrations between 5 and 15%. The anionic detergent sodium deoxycholate (DOC) was used as a reference. Electrophoretic, immunochemical and electron microscopy techniques have characterized the extracts and their chromatographic fractions. With CHAPS and n-OG detergents in concentrations between 5 and 15%, a higher yield was obtained in the extraction of proteins and lipopolysaccharides (LPS) and other components from the bacterial surface compared to 10% DOC. When using 10% DOC, 15% CHAPS and n-OG between 5 and 15%, stable proteoliposomes were formed, of average size between 82 and 93 nm in diameter, with known proportions of proteins, LPS and other components. In some of the concentrations, liposomes were formed with almost pure proteins. Some cholera outer membrane proteins like the 17 kDa protein, which corresponds to the mannose-sensitive hemagglutinin (MSHA), which mediates the adhesion to the brush border of the small intestine and the outer membrane protein U (OMPU) were identified with monoclonal antibodies (mAbs) and purified. The fundamental components of liposomes, proteins and LPS, retained their molecular weights, when compared with known standards and by processing programs of electrophoretic profiles and their antigenicity, without alterations due to the extraction procedure, as could be verified by immune identification techniques with monoclonal antibodies in the case of LPS, significant antigens in this pathogen. The main purpose of the present work was to show that a new anticholera vaccine formulation based on cochleates, containing selected protein and LPS fraction extracted by detergents, is able to elicit protective high titers of bactericidal antibodies after intragastric immunization in the mice model. The objective was achieved.
Collapse
Affiliation(s)
- S B Tamargo
- Latin American School of Medicine, Havana, Cuba; Jiangxi Institute of Biological Products, Ji'An, China
| | - T Bui Thanh
- Pharmacy and Foods Institute, University of Havana, Cuba
| | - M Pérez
- Pharmacy and Foods Institute, University of Havana, Cuba
| | - O Otero
- Finlay Institute for Vaccines, Havana City, Cuba
| | - H R Oliva
- Finlay Institute for Vaccines, Havana City, Cuba
| | - G Falero
- Finlay Institute for Vaccines, Havana City, Cuba
| | - J L Pérez
- Finlay Institute for Vaccines, Havana City, Cuba
| | - M B Cedré
- Finlay Institute for Vaccines, Havana City, Cuba
| | - E Okuskhanova
- Shakarim State University of Semey, Semey, 071412, Kazakhstan
| | - M Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - M A Shariati
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University, Orel City, 302026, Russia; K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation; Kazakh Research Institute of Processing and Food Industry (Semey Branch), Kazakhstan
| | - G V G Sierra
- Group of Biotechnology and Pharmaceutical Industries of Cuba (BioCubaFarma), Havana, Cuba; Jiangxi Institute of Biological Products, Ji'An, China.
| |
Collapse
|
4
|
Karimi Bavandpour A, Bakhshi B, Najar-Peerayeh S. The roles of mesoporous silica and carbon nanoparticles in antigen stability and intensity of immune response against recombinant subunit B of cholera toxin in a rabbit animal model. Int J Pharm 2019; 573:118868. [PMID: 31765785 DOI: 10.1016/j.ijpharm.2019.118868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
Vaccines are the front line in the fight against diseases. However, setbacks with existing cholera vaccines have ignited a considerable effort to develop more suitable vaccine formulations. In this study, we aim to investigate the effect of antigen stability and controlled release in inducing an immune response. Therefore, two types of silica and carbon mesoporous nanoparticles of the same size and shape but different pore architectures were synthesized and loaded with recombinant cholera toxin subunit B to serve as a model for antigen stability and controlled release of antigenic CTB. In order to evaluate immune response efficacy for these model formulations, IgG and IgA responses and fluid accumulation (FA) index were measured in immunized rabbits, which were challenged with wild-type Vibrio cholerae. Our result suggests that mesoporous silica nanoparticles have greater efficacy in inducing mucosal immune responses, and it proved more proficiency in overall immune responses in challenge experiments and FA index (p < 0.05). These findings indicate that mesoporous nanoparticles and, in particular, mesoporous silica nanoparticles, could be used in oral vaccine formulation against cholera.
Collapse
Affiliation(s)
- Ali Karimi Bavandpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Tamargo Santos B, Fleitas Pérez C, Infante Bourzac JF, Márquez Nápoles Y, Ramírez González W, Bourg V, Torralba D, Pérez V, Mouriño A, Ayala J, Labrada Rosado A, Aleya L, Bungau S, Sierra González VG. Remote induction of cellular immune response in mice by anti-meningococcal nanocochleates - nanoproteoliposomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1055-1063. [PMID: 31018447 DOI: 10.1016/j.scitotenv.2019.03.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
New adjuvant formulations, based on proteoliposomes <40 nm and cochleates <100 nm, without Al(OH)3 adjuvant, were evaluated regarding their ability to generate Th1 immune response through a Delayed -Type Hypersensitivity Test, at the mouse model, by using a Neisseria meningitidis B protein complex as antigen. The formulations were administered by intramuscular (IM) (2 inoculations - at baseline and after 14 days) and intranasal (IN) (3 inoculations at 7 days) immunization pathways. All IM immunized groups were able to induce similar response to these formulations as well as to VA-MENGOC-BC® vaccine - containing Al(OH)3 adjuvant (used as positive control of the trial). In all groups, the induced inflammation (IP) rate was statistically higher than in the negative control group (CN) (p < 0.05). Immunogenicity, measured by HSR and CD4+ lymphocyte increase was equivalent to the control vaccine and most important, granuloma reactogenicity at the site of injection was eliminated, fact demonstrated by histological study. All groups of animals immunized by IN route showed HSR reactions and statistically significant differences with respect to the CN group. However, IP values were lower, with statistical differences (p < 0.05) for the same adjuvant formulation IM administered, except the AIF2-nCh formulation that generated statistically similar induction (p > 0.05) by both immunization pathways, suggesting it to be the best candidate for the next IN trial. Proteoliposome and cochleate formulations tested were able to mount potent Th-1 immune response, equivalent to the original vaccine formulation, with the advantage of less reactogenicity in the site of the injection, caused by the toxicity of Al(OH)3 adjuvant gel.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Mouriño
- Santiago de Compostela University, Santiago de Compostela, Spain
| | - Juan Ayala
- Center for Molecular Biology "Severo Ochoa", Madrid, Spain
| | | | - Lotfi Aleya
- Laboratoire Chrono-environnement, Université de Franche-Comté, Besançon, France.
| | - Simona Bungau
- Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | | |
Collapse
|
6
|
Kakhi Z, Frisch B, Heurtault B, Pons F. Liposomal constructs for antitumoral vaccination by the nasal route. Biochimie 2016; 130:14-22. [DOI: 10.1016/j.biochi.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/06/2016] [Indexed: 11/27/2022]
|
7
|
Bozó T, Brecska R, Gróf P, Kellermayer MSZ. Extreme resilience in cochleate nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:839-845. [PMID: 25521248 DOI: 10.1021/la504428x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cochleates, prospective nanoscale drug delivery vehicles, are rolls of negatively charged phospholipid membrane layers. The membrane layers are held together by calcium ions; however, neither the magnitude of membrane interaction forces nor the overall mechanical properties of cochleates have been known. Here, we manipulated individual nanoparticles with atomic force microscopy to characterize their nanomechanical behavior. Their stiffness (4.2-12.5 N/m) and membrane-rupture forces (45.3-278 nN) are orders of magnitude greater than those of the tough viral nanoshells. Even though the fundamental building material of cochleates is a fluid membrane, the combination of supramolecular geometry, the cross-linking action of calcium, and the tight packing of the ions apparently lead to extreme mechanical resilience. The supramolecular design of cochleates may provide efficient protection for encapsulated materials and give clues to understanding biomolecular structures of similar design, such as the myelinated axon.
Collapse
Affiliation(s)
- Tamás Bozó
- Department of Biophysics and Radiation Biology, and ‡MTA-SE Molecular Biophysics Research Group, Semmelweis University , Tűzoltó utca 37-47, Budapest 1094, Hungary
| | | | | | | |
Collapse
|
8
|
Wang L, Tonggu L. Membrane protein reconstitution for functional and structural studies. SCIENCE CHINA-LIFE SCIENCES 2015; 58:66-74. [PMID: 25576454 DOI: 10.1007/s11427-014-4769-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Membrane proteins are involved in various critical biological processes, and studying membrane proteins represents a major challenge in protein biochemistry. As shown by both structural and functional studies, the membrane environment plays an essential role for membrane proteins. In vitro studies are reliant on the successful reconstitution of membrane proteins. This review describes the interaction between detergents and lipids that aids the understanding of the reconstitution processes. Then the techniques of detergent removal and a few useful techniques to refine the formed proteoliposomes are reviewed. Finally the applications of reconstitution techniques to study membrane proteins involved in Ca(2+) signaling are summarized.
Collapse
Affiliation(s)
- LiGuo Wang
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, USA,
| | | |
Collapse
|
9
|
Nagarsekar K, Ashtikar M, Thamm J, Steiniger F, Schacher F, Fahr A, May S. Electron microscopy and theoretical modeling of cochleates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13143-13151. [PMID: 25318049 DOI: 10.1021/la502775b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cochleates are self-assembled cylindrical condensates that consist of large rolled-up lipid bilayer sheets and represent a novel platform for oral and systemic delivery of therapeutically active medicinal agents. With few preceding investigations, the physical basis of cochleate formation has remained largely unexplored. We address the structure and stability of cochleates in a combined experimental/theoretical approach. Employing different electron microscopy methods, we provide evidence for cochleates consisting of phosphatidylserine and calcium to be hollow tubelike structures with a well-defined constant lamellar repeat distance and statistically varying inner and outer radii. To rationalize the relation between inner and outer radii, we propose a theoretical model. Based on the minimization of a phenomenological free energy expression containing a bending, adhesion, and frustration contribution, we predict the optimal tube dimensions of a cochleate and estimate ratios of material constants for cochleates consisting of phosphatidylserines with varied hydrocarbon chain structures. Knowing and understanding these ratios will ultimately benefit the successful formulation of cochleates for drug delivery applications.
Collapse
Affiliation(s)
- Kalpa Nagarsekar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, and §Institut für Organische Chemie und Makromolekulare Chemie und Jena Center for Soft Matter, Friedrich-Schiller-Universität Jena , Lessingstraße 8, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Pawar AP, Vinugala D, Bothiraja C. WITHDRAWN: Nanocochleates derived from nanoliposomes for paclitaxel oral use: Preparation, characterization, in vitro anticancer testing, bioavailability and biodistribution study in rats. Biomed Pharmacother 2014. [DOI: 10.1016/j.biopha.2014.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Bothiraja C, Yojana BD, Pawar AP, Shaikh KS, Thorat UH. Fisetin-loaded nanocochleates: formulation, characterisation,in vitroanticancer testing, bioavailability and biodistribution study. Expert Opin Drug Deliv 2013; 11:17-29. [DOI: 10.1517/17425247.2013.860131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Pastor M, Pedraz JL, Esquisabel A. The state-of-the-art of approved and under-development cholera vaccines. Vaccine 2013; 31:4069-78. [PMID: 23845813 DOI: 10.1016/j.vaccine.2013.06.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022]
Abstract
Cholera remains a huge public health problem. Although in 1894, the first cholera vaccination was reported, an ideal vaccine that meets all the requirements of the WHO has not yet been produced. Among the different approaches used for cholera vaccination, attenuated vaccines represent a major category; these vaccines are beneficial in being able to induce a strong protective response after a single administration. However, they have possible negative effects on immunocompromised patient populations. Both the licensed CVD103-HgR and other vaccine approaches under development are detailed in this article, such as the Vibrio cholerae 638 vaccine candidate, Peru-15 or CholeraGarde(®) and the VA1.3, VA1.4, IEM 108 VCUSM2 and CVD 112 vaccine candidates. In another strategy, killed V. cholerae vaccines have been developed, including Dukoral(®), mORCAX(®) and Sanchol™. The killed vaccines are already sold, and they have successfully demonstrated their potential to protect populations in endemic areas or after natural disasters. However, these vaccines do not fulfill all the requirements of the WHO because they fail to confer long-term protection, are not suitable for children under two years, require more than a single dose and require a distribution chain with cold storage. Lastly, other vaccine strategies under development are summarized in this review. Among these strategies, vaccine candidates based on alternative drug delivery systems that have been reported lately in the literature are discussed, such as microparticles, proteoliposomes, LPS subunits, DNA vaccines and rice seeds containing toxin subunits. Preliminary results reported by many groups working on alternative delivery systems for cholera vaccines demonstrate the importance of new technologies in addressing old problems such as cholera. Although a fully ideal vaccine has not yet been designed, promising steps have been reported in the literature resulting in hope for the fight against cholera.
Collapse
Affiliation(s)
- M Pastor
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
14
|
Acevedo R, Callicó A, Aranguren Y, Zayas C, Valdés Y, Pérez O, García L, Ferro VA, Pérez JL. Immune adjuvant effect of V. cholerae O1 derived Proteoliposome coadministered by intranasal route with Vi polysaccharide from Salmonella Typhi. BMC Immunol 2013; 14 Suppl 1:S10. [PMID: 23458379 PMCID: PMC3582457 DOI: 10.1186/1471-2172-14-s1-s10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The proteoliposome derived from Vibrio cholerae O1 (PLc) is a nanoscaled structure obtained by a detergent extraction process. Intranasal (i.n) administration of PLc was immunogenic at mucosal and systemic level vs. V. cholerae; however the adjuvant potential of this structure for non-cholera antigens has not been proven yet. The aim of this work was to evaluate the effect of coadministering PLc with the Vi polysaccharide antigen (Poli Vi) of S. Typhi by the i.n route. The results showed that Poli Vi coadministered with PLc (PLc+Poli Vi) induce a higher IgA response in saliva (p<0.01) and faeces (p<0.01) than Poli Vi administered alone. Likewise, the IgG response in sera was higher in animals immunised with PLc+Poli Vi (p<0.01). Furthermore, IgG induced in sera of mice immunised with PLc+Poli Vi was similar (p>0.05) to that induced in a group of mice immunised by the parenteral route with the Cuban anti-typhoid vaccine vax-TyVi, although this vaccine did not induce a mucosal response. In conclusion, this work demonstrates that PLc can be used as a mucosal adjuvant to potentiate the immune response against a polysaccharide antigen like Poli Vi.
Collapse
Affiliation(s)
- Reinaldo Acevedo
- Research and Development vice-presidency of Finlay Institute, Havana, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Guilherme L, Ferreira FM, Köhler KF, Postol E, Kalil J. A vaccine against Streptococcus pyogenes: the potential to prevent rheumatic fever and rheumatic heart disease. Am J Cardiovasc Drugs 2013; 13:1-4. [PMID: 23355360 DOI: 10.1007/s40256-013-0005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Streptococcus pyogenes causes severe, invasive infections such as the sequelae associated with acute rheumatic fever, rheumatic heart disease, acute glomerulonephritis, uncomplicated pharyngitis, and pyoderma. Efforts to produce a vaccine against S. pyogenes began several decades ago, and different models have been proposed. We have developed a vaccine candidate peptide, StreptInCor, comprising 55 amino acid residues of the C-terminal portion of the M protein and encompassing both the T- and B-cell protective epitopes. The present article summarizes data from the previous 5 years during which we tested the immunogenicity and safety of StreptInCor in different animal models. We showed that StreptInCor overlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules. These results are consistent with peptides that have a universal vaccine epitope. The tridimensional molecular structure of StreptInCor was elucidated by nuclear magnetic resonance spectroscopy, which showed that its structure is composed of two microdomains linked by an 18-residue α-helix. Additionally, we comprehensively evaluated the structural stability of the StreptInCor peptide in different physicochemical conditions using circular dichroism. Additional experiments were performed with inbred, outbred, and HLA class II transgenic mice. Analysis of several organs of these mice showed neither deleterious nor autoimmune reactions even after a long period of vaccination, indicating that the StreptInCor candidate peptide could be considered as an immunogenic and safe vaccine.
Collapse
|
16
|
Cochleates derived from Vibrio cholerae O1 proteoliposomes: the impact of structure transformation on mucosal immunisation. PLoS One 2012; 7:e46461. [PMID: 23077508 PMCID: PMC3470579 DOI: 10.1371/journal.pone.0046461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/23/2012] [Indexed: 11/21/2022] Open
Abstract
Cochleates are phospholipid-calcium precipitates derived from the interaction of anionic lipid vesicles with divalent cations. Proteoliposomes from bacteria may also be used as a source of negatively charged components, to induce calcium-cochleate formation. In this study, proteoliposomes from V. cholerae O1 (PLc) (sized 160.7±1.6 nm) were transformed into larger (16.3±4.6 µm) cochleate-like structures (named Adjuvant Finlay Cochleate 2, AFCo2) and evaluated by electron microscopy (EM). Measurements from transmission EM (TEM) showed the structures had a similar size to that previously reported using light microscopy, while observations from scanning electron microscopy (SEM) indicated that the structures were multilayered and of cochleate-like formation. The edges of the AFCo2 structures appeared to have spaces that allowed penetration of negative stain or Ovalbumin labeled with Texas Red (OVA-TR) observed by epi-fluorescence microscopy. In addition, freeze fracture electron microscopy confirmed that the AFCo2 structures consisted of multiple overlapping layers, which corresponds to previous descriptions of cochleates. TEM also showed that small vesicles co-existed with the larger cochleate structures, and in vitro treatment with a calcium chelator caused the AFCo2 to unfold and reassemble into small proteoliposome-like structures. Using OVA as a model antigen, we demonstrated the potential loading capacity of a heterologous antigen and in vivo studies showed that with simple admixing and administration via intragastric and intranasal routes AFCo2 provided enhanced adjuvant properties compared with PLc.
Collapse
|
17
|
Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2012; 2:1485-516. [PMID: 22826876 DOI: 10.4155/tde.11.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every living organism comprises of lipids as basic building blocks in addition to other components. Utilizing these lipids for pharmaceutical and biomedical applications can overcome biocompatibility and biodegradability issues. A well known example is liposomes (lipids arranged in lamellar structures), but other than that there are additional unique mesophasic structures of lipids formed as a result of lipid polymorphisms, which include cubic-, hexagonal- or sponge-phase structures. These structures provide the advantages of stability and production feasibility compared with liposomes. Cubosomes, which exist in a cubic structure, have improved stability, bioadhesivity and biocompatibility. Hexagonal phases or hexosomes exhibit hexagonal arrangements and can encapsulate different drugs with high stability. Lipids also forms tube-like structures known as tubules and ribbons that are also utilized in different biomedical applications, especially in tissue engineering. Immune stimulating complexes are nanocage-like structures formed as a result of interactions of lipid, antigen and Quillaja saponin. These lipidic mesophasic structures have been utilized for gene, vaccine and drug delivery. This article addresses lipid self-assembled supramolecular nanostructures, including cubosomes, hexosomes, tubules, ribbons, cochleates, lipoplexes and immune stimulating complexes and their biomedical applications.
Collapse
|
18
|
Muse M, Grandjean C, Wade TK, Wade WF. A one dose experimental cholera vaccine. ACTA ACUST UNITED AC 2012; 66:98-115. [DOI: 10.1111/j.1574-695x.2012.00993.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Terri K. Wade
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon; NH; USA
| | - William F. Wade
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon; NH; USA
| |
Collapse
|
19
|
Abstract
Whilst oral vaccination is a potentially preferred route in terms of patient adherence and mass vaccination, the ability to formulate effective oral vaccines remains a challenge. The primary barrier to oral vaccination is effective delivery of the vaccine through the GI tract owing to the many obstacles it presents, including low pH, enzyme degradation and bile-salt solubilization, which can result in breakdown/deactivation of a vaccine. For effective immune responses after oral administration, particulates need to be taken up by the M cells however, these are few in number. To enhance M-cell uptake, particle characteristics can be optimized with particle size, surface charge, targeting groups and bioadhesive properties all being considerations. Yet improved uptake may not translate into enhanced immune responses and formulating particulates with inherent adjuvant properties can offer advantages. Within this article, we establish the options available for consideration when building effective oral particulate vaccines.
Collapse
|
20
|
Epand RF, Mor A, Epand RM. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 2011; 68:2177-88. [PMID: 21573783 PMCID: PMC11114973 DOI: 10.1007/s00018-011-0711-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | | | | |
Collapse
|
21
|
Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 2011; 29:5304-12. [PMID: 21600950 DOI: 10.1016/j.vaccine.2011.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/15/2011] [Accepted: 05/05/2011] [Indexed: 01/07/2023]
Abstract
Development of effective new mucosal vaccine adjuvants has become a priority with the increase in emerging viral and bacterial pathogens. We previously reported that cationic liposomes complexed with non-coding plasmid DNA (CLDC) were effective parenteral vaccine adjuvants. However, little is known regarding the ability of liposome-nucleic acid complexes to function as mucosal vaccine adjuvants, or the nature of the mucosal immune responses elicited by mucosal liposome-nucleic acid adjuvants. To address these questions, antibody and T cell responses were assessed in mice following intranasal immunization with CLDC-adjuvanted vaccines. The effects of CLDC adjuvant on antigen uptake, trafficking, and cytokine responses in the airways and draining lymph nodes were also assessed. We found that mucosal immunization with CLDC-adjuvanted vaccines effectively generated potent mucosal IgA antibody responses, as well as systemic IgG responses. Notably, mucosal immunization with CLDC adjuvant was very effective in generating strong and sustained antigen-specific CD8(+) T cell responses in the airways of mice. Mucosal administration of CLDC vaccines also induced efficient uptake of antigen by DCs within the mediastinal lymph nodes. Finally, a killed bacterial vaccine adjuvanted with CLDC induced significant protection from lethal pulmonary challenge with Burkholderia pseudomallei. These findings suggest that liposome-nucleic acid adjuvants represent a promising new class of mucosal adjuvants for non-replicating vaccines, with notable efficiency at eliciting both humoral and cellular immune responses following intranasal administration.
Collapse
|
22
|
Abstract
The ability of Vibrio cholerae to persist in bodies of water will continue to confound our ability to eradicate cholera through improvements to infrastructure, and thus cholera vaccines are needed. We aim for an inexpensive vaccine that can provide long-lasting protection from all epidemic cholera infections, currently caused by O1 or O139 serogroups. Recent insights into correlates of protection, epidemiology and pathogenesis may help us design improved vaccines. This notwithstanding, we have come to appreciate that even marginally protective vaccines, such as oral whole-cell killed vaccines, if widely distributed, can provide significant protection, owing to herd immunity. Further efforts are still required to provide more effective protection of young children.
Collapse
Affiliation(s)
- Anne L Bishop
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | |
Collapse
|
23
|
Heurtault B, Frisch B, Pons F. Liposomes as delivery systems for nasal vaccination: strategies and outcomes. Expert Opin Drug Deliv 2010; 7:829-44. [PMID: 20459361 DOI: 10.1517/17425247.2010.488687] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Among the particulate systems that have been envisaged in vaccine delivery, liposomes are very attractive. These phospholipid vesicles can indeed deliver a wide range of molecules. They have been shown to enhance considerably the immunogenicity of weak protein antigens or synthetic peptides. Also, they offer a wide range of pharmaceutical options for the design of vaccines. In the past decade, the nasal mucosa has emerged as an effective route for vaccine delivery, together with the opportunity to develop non-invasive approaches in vaccination. AREAS COVERED IN THIS REVIEW This review focuses on the recent strategies and outcomes that have been developed around the use of liposomes in nasal vaccination. WHAT THE READER WILL GAIN The various formulation parameters, including lipid composition, size, charge and mucoadhesiveness, that have been investigated in the design of liposomal vaccine candidates dedicated to nasal vaccination are outlined. Also, an overview of the immunological and protective responses obtained with the developed formulations is presented. TAKE HOME MESSAGE This review illustrates the high potential of liposomes as nasal vaccine delivery systems.
Collapse
Affiliation(s)
- Béatrice Heurtault
- Equipe de Biovectorologie, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74, route du Rhin, 67401 Illkirch Cedex, France.
| | | | | |
Collapse
|
24
|
Del Campo J, Lindqvist M, Cuello M, Bäckström M, Cabrerra O, Persson J, Perez O, Harandi AM. Intranasal immunization with a proteoliposome-derived cochleate containing recombinant gD protein confers protective immunity against genital herpes in mice. Vaccine 2010; 28:1193-200. [DOI: 10.1016/j.vaccine.2009.11.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 02/06/2023]
|