1
|
Fuller KB, Requijo RM, Schneider DA, Lucius AL. NTPs compete in the active site of RNA polymerases I and II. Biophys Chem 2024; 314:107302. [PMID: 39180852 PMCID: PMC11401760 DOI: 10.1016/j.bpc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ryan M Requijo
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. Reversible Kinetics in Multi-nucleotide Addition Catalyzed by S. cerevisiae RNA polymerase II Reveal Slow Pyrophosphate Release. J Mol Biol 2024; 436:168606. [PMID: 38729258 PMCID: PMC11162919 DOI: 10.1016/j.jmb.2024.168606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Eukaryotes express at least three nuclear DNA dependent RNA polymerases (Pols). Pols I, II, and III synthesize ribosomal (r) RNA, messenger (m) RNA, and transfer (t) RNA, respectively. Pol I and Pol III have intrinsic nuclease activity conferred by the A12.2 and C11 subunits, respectively. In contrast, Pol II requires the transcription factor (TF) IIS to confer robust nuclease activity. We recently reported that in the absence of the A12.2 subunit Pol I reverses bond formation by pyrophosphorolysis in the absence of added PPi, indicating slow PPi release. Thus, we hypothesized that Pol II, naturally lacking TFIIS, would reverse bond formation through pyrophosphorolysis. Here we report the results of transient-state kinetic experiments to examine the addition of nine nucleotides to a growing RNA chain catalyzed by Pol II. Our results indicate that Pol II reverses bond formation by pyrophosphorolysis in the absence of added PPi. We propose that, in the absence of endonuclease activity, this bond reversal may represent kinetic proofreading. Thus, given the hypothesis that Pol I evolved from Pol II through the incorporation of general transcription factors, pyrophosphorolysis may represent a more ancient form of proofreading that has been evolutionarily replaced with nuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Carter ZI, Jacobs RQ, Schneider DA, Lucius AL. Transient-State Kinetic Analysis of the RNA Polymerase II Nucleotide Incorporation Mechanism. Biochemistry 2023; 62:95-108. [PMID: 36525636 PMCID: PMC10069233 DOI: 10.1021/acs.biochem.2c00608] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic RNA polymerase II (Pol II) is an essential enzyme that lies at the core of eukaryotic biology. Due to its pivotal role in gene expression, Pol II has been subjected to a substantial number of investigations. We aim to further our understanding of Pol II nucleotide incorporation by utilizing transient-state kinetic techniques to examine Pol II single nucleotide addition on the millisecond time scale. We analyzed Saccharomyces cerevisiae Pol II incorporation of ATP or an ATP analog, Sp-ATP-α-S. Here we have measured the rate constants governing individual steps of the Pol II transcription cycle in the presence of ATP or Sp-ATP-α-S. These results suggest that Pol II catalyzes nucleotide incorporation by binding the next cognate nucleotide and immediately catalyzes bond formation and bond formation is either followed by a conformational change or pyrophosphate release. By comparing our previously published RNA polymerase I (Pol I) and Pol I lacking the A12 subunit (Pol I ΔA12) results that we collected under the same conditions with the identical technique, we show that Pol II and Pol I ΔA12 exhibit similar nucleotide addition mechanisms. This observation indicates that removal of the A12 subunit from Pol I results in a Pol II like enzyme. Taken together, these data further our collective understanding of Pol II's nucleotide incorporation mechanism and the evolutionary divergence of RNA polymerases across the three domains of life.
Collapse
Affiliation(s)
- Zachariah I Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| |
Collapse
|
4
|
Johnson RS, Strausbauch M, McCloud C. An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription. PLoS One 2022; 17:e0273746. [PMID: 36282801 PMCID: PMC9595533 DOI: 10.1371/journal.pone.0273746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
The elementary steps of transcription as catalyzed by E. coli RNA polymerase during one and two rounds of the nucleotide addition cycle (NAC) were resolved in rapid kinetic studies. Modelling of stopped-flow kinetic data of pyrophosphate release in a coupled enzyme assay during one round of the NAC indicates that the rate of pyrophosphate release is significantly less than that for nucleotide incorporation. Upon modelling of the stopped-flow kinetic data for pyrophosphate release during two rounds of the NAC, it was observed that the presence of the next nucleotide for incorporation increases the rate of release of the first pyrophosphate equivalent; incorrect nucleotides for incorporation had no effect on the rate of pyrophosphate release. Although the next nucleotide for incorporation increases the rate of pyrophosphate release, it is still significantly less than the rate of incorporation of the first nucleotide. The results from the stopped-flow kinetic studies were confirmed by using quench-flow followed by thin-layer chromatography (QF-TLC) with only the first nucleotide for incorporation labeled on the gamma phosphate with 32P to monitor pyrophosphate release. Collectively, the results are consistent with an NTP-driven model for the NAC in which the binding of the next cognate nucleotide for incorporation causes a synergistic conformational change in the enzyme that triggers the more rapid release of pyrophosphate, translocation of the enzyme along the DNA template strand and nucleotide incorporation.
Collapse
Affiliation(s)
- Ronald S. Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| | - Mark Strausbauch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Christopher McCloud
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
5
|
KIreeva M, Trang C, Matevosyan G, Turek-Herman J, Chasov V, Lubkowska L, Kashlev M. RNA-DNA and DNA-DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate. Nucleic Acids Res 2019; 46:5764-5775. [PMID: 29771376 PMCID: PMC6009650 DOI: 10.1093/nar/gky393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Translocation of RNA polymerase (RNAP) along DNA may be rate-limiting for transcription elongation. The Brownian ratchet model posits that RNAP rapidly translocates back and forth until the post-translocated state is stabilized by NTP binding. An alternative model suggests that RNAP translocation is slow and poorly reversible. To distinguish between these two models, we take advantage of an observation that pyrophosphorolysis rates directly correlate with the abundance of the pre-translocated fraction. Pyrophosphorolysis by RNAP stabilized in the pre-translocated state by bacteriophage HK022 protein Nun was used as a reference point to determine the pre-translocated fraction in the absence of Nun. The stalled RNAP preferentially occupies the post-translocated state. The forward translocation rate depends, among other factors, on melting of the RNA–DNA base pair at the upstream edge of the transcription bubble. DNA–DNA base pairing immediately upstream from the RNA–DNA hybrid stabilizes the post-translocated state. This mechanism is conserved between E. coli RNAP and S. cerevisiae RNA polymerase II and is partially dependent on the lid domain of the catalytic subunit. Thus, the RNA–DNA hybrid and DNA reannealing at the upstream edge of the transcription bubble emerge as targets for regulation of the transcription elongation rate.
Collapse
Affiliation(s)
- Maria KIreeva
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Cyndi Trang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Gayane Matevosyan
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joshua Turek-Herman
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vitaly Chasov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
6
|
The A12.2 Subunit Is an Intrinsic Destabilizer of the RNA Polymerase I Elongation Complex. Biophys J 2019; 114:2507-2515. [PMID: 29874602 DOI: 10.1016/j.bpj.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor.
Collapse
|
7
|
The Role of Pyrophosphorolysis in the Initiation-to-Elongation Transition by E. coli RNA Polymerase. J Mol Biol 2019; 431:2528-2542. [PMID: 31029704 DOI: 10.1016/j.jmb.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
Abstract
RNA polymerase can cleave a phosphodiester bond at the 3' end of a nascent RNA in the presence of pyrophosphate producing NTP. Pyrophosphorolysis has been characterized during elongation steps of transcription where its rate is significantly slower than the forward rate of NMP addition. In contrast, we report here that pyrophosphorolysis can occur in a millisecond time scale during the transition of Escherichia coli RNA polymerase from initiation to elongation at the psbA2 promoter. This rapid pyrophosphorolysis occurs during productive RNA synthesis as opposed to abortive RNA synthesis. Dissociation of σ70 or RNA extension beyond nine nucleotides dramatically reduces the rate of pyrophosphorolysis. We argue that the rapid pyrophosphorolysis allows iterative cycles of cleavage and re-synthesis of the 3' phosphodiester bond by the productive complexes in the early stage of transcription. This iterative process may provide an opportunity for the σ70 to dissociate from the RNA exit channel of the enzyme, enabling RNA to extend through the channel.
Collapse
|
8
|
Gabizon R, Lee A, Vahedian-Movahed H, Ebright RH, Bustamante CJ. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates. Nat Commun 2018; 9:2930. [PMID: 30050038 PMCID: PMC6062546 DOI: 10.1038/s41467-018-05344-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Transcription by RNA polymerase (RNAP) is interspersed with sequence-dependent pausing. The processes through which paused states are accessed and stabilized occur at spatiotemporal scales beyond the resolution of previous methods, and are poorly understood. Here, we combine high-resolution optical trapping with improved data analysis methods to investigate the formation of paused states at enhanced temporal resolution. We find that pause sites reduce the forward transcription rate of nearly all RNAP molecules, rather than just affecting the subset of molecules that enter long-lived pauses. We propose that the reduced rates at pause sites allow time for the elongation complex to undergo conformational changes required to enter long-lived pauses. We also find that backtracking occurs stepwise, with states backtracked by at most one base pair forming quickly, and further backtracking occurring slowly. Finally, we find that nascent RNA structures act as modulators that either enhance or attenuate pausing, depending on the sequence context.
Collapse
Affiliation(s)
- Ronen Gabizon
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA
| | - Antony Lee
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Hanif Vahedian-Movahed
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Carlos J Bustamante
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Afonin KA, Bindewald E, Kireeva M, Shapiro BA. Computational and experimental studies of reassociating RNA/DNA hybrids containing split functionalities. Methods Enzymol 2015; 553:313-34. [PMID: 25726471 PMCID: PMC6319920 DOI: 10.1016/bs.mie.2014.10.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, we developed a novel technique based on RNA/DNA hybrid reassociation that allows conditional activation of different split functionalities inside diseased cells and in vivo. We further expanded this idea to permit simultaneous activation of multiple different functions in a fully controllable fashion. In this chapter, we discuss some novel computational approaches and experimental techniques aimed at the characterization, design, and production of reassociating RNA/DNA hybrids containing split functionalities. We also briefly describe several experimental techniques that can be used to test these hybrids in vitro and in vivo.
Collapse
Affiliation(s)
- Kirill A Afonin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research Inc., National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, National Cancer Institute, Frederick, Maryland, USA
| | - Bruce A Shapiro
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
10
|
Afonin K, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, Shapiro BA. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 2014; 47:1731-41. [PMID: 24758371 PMCID: PMC4066900 DOI: 10.1021/ar400329z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/25/2022]
Abstract
CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Mikhail Kashlev
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Kireeva ML, Kashlev M, Burton ZF. RNA polymerase structure, function, regulation, dynamics, fidelity, and roles in gene expression. Chem Rev 2014; 113:8325-30. [PMID: 24219496 DOI: 10.1021/cr400436m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Coliphage HK022 Nun protein inhibits RNA polymerase translocation. Proc Natl Acad Sci U S A 2014; 111:E2368-75. [PMID: 24853501 DOI: 10.1073/pnas.1319740111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA-DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP β' subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5' edge of the RNA-DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors.
Collapse
|
13
|
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19:71-83. [PMID: 24767259 DOI: 10.1016/j.dnarep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining high transcriptional fidelity is essential for life. Some DNA lesions lead to significant changes in transcriptional fidelity. In this review, we will summarize recent progress towards understanding the molecular basis of RNA polymerase II (Pol II) transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. In particular, we will focus on the three key checkpoint steps of controlling Pol II transcriptional fidelity: insertion (specific nucleotide selection and incorporation), extension (differentiation of RNA transcript extension of a matched over mismatched 3'-RNA terminus), and proofreading (preferential removal of misincorporated nucleotides from the 3'-RNA end). We will also discuss some novel insights into the molecular basis and chemical perspectives of controlling Pol II transcriptional fidelity through structural, computational, and chemical biology approaches.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Linati Da
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Steven W Plouffe
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Eric Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States.
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States.
| |
Collapse
|
14
|
Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit RNA polymerases. Chem Rev 2013; 113:8546-66. [PMID: 23987500 PMCID: PMC3829680 DOI: 10.1021/cr400046x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Beibei Wang
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zachary F. Burton
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
15
|
Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, Cukier RI, Nudler E, Burton ZF. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:187-98. [PMID: 23202476 PMCID: PMC3619131 DOI: 10.1016/j.bbagrm.2012.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 01/22/2023]
Abstract
The bridge α-helix in the β' subunit of RNA polymerase (RNAP) borders the active site and may have roles in catalysis and translocation. In Escherichia coli RNAP, a bulky hydrophobic segment near the N-terminal end of the bridge helix is identified (β' 772-YFI-774; the YFI motif). YFI is located at a distance from the active center and adjacent to a glycine hinge (β' 778-GARKG-782) involved in dynamic bending of the bridge helix. Remarkably, amino acid substitutions in YFI significantly alter intrinsic termination, pausing, fidelity and translocation of RNAP. F773V RNAP largely ignores the λ tR2 terminator at 200μM NTPs and is strongly reduced in λ tR2 recognition at 1μM NTPs. F773V alters RNAP pausing and backtracking and favors misincorporation. By contrast, the adjacent Y772A substitution increases fidelity and exhibits other transcriptional defects generally opposite to those of F773V. All atom molecular dynamics simulation revealed two separate functional connections emanating from YFI explaining the distinct effects of substitutions: Y772 communicates with the active site through the link domain in the β subunit, whereas F773 communicates through the fork domain in the β subunit. I774 interacts with the F-loop, which also contacts the glycine hinge of the bridge helix. These results identified negative and positive circuits coupled at YFI and employed for regulation of catalysis, elongation, termination and translocation.
Collapse
Affiliation(s)
- Yuri A. Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | - Kristopher Opron
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | - Fadi Assaf
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio USA
| | - Maria L. Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert I. Cukier
- Department of Chemistry, Michigan State University, E. Lansing, MI 48824-1319, USA
| | - Evgeny Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | - Zachary F. Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| |
Collapse
|
16
|
Zhou YN, Lubkowska L, Hui M, Court C, Chen S, Court DL, Strathern J, Jin DJ, Kashlev M. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli. J Biol Chem 2013; 288:2700-10. [PMID: 23223236 PMCID: PMC3554936 DOI: 10.1074/jbc.m112.429464] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 01/05/2023] Open
Abstract
Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the β subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity.
Collapse
Affiliation(s)
- Yan Ning Zhou
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Lucyna Lubkowska
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Monica Hui
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Carolyn Court
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Shuo Chen
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Donald L. Court
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Jeffrey Strathern
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ding Jun Jin
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Mikhail Kashlev
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
17
|
Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. J Mol Biol 2012; 425:697-712. [PMID: 23238253 DOI: 10.1016/j.jmb.2012.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022]
Abstract
Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3' end of the nascent RNA in the active center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
Collapse
|
18
|
Arnold JJ, Sharma SD, Feng JY, Ray AS, Smidansky ED, Kireeva ML, Cho A, Perry J, Vela JE, Park Y, Xu Y, Tian Y, Babusis D, Barauskus O, Peterson BR, Gnatt A, Kashlev M, Zhong W, Cameron CE. Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides. PLoS Pathog 2012; 8:e1003030. [PMID: 23166498 PMCID: PMC3499576 DOI: 10.1371/journal.ppat.1003030] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity. Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by side effects of unknown origin. Here we show in biochemical and cell-based studies that antiviral ribonucleotide analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Analogues that terminate RNA synthesis by viral RNA polymerases also inhibit these cellular RNA polymerase. Importantly, the TFIIS proofreading activity of Pol II is capable of excising these analogues from Pol II transcripts. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.
Collapse
Affiliation(s)
- Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JJA); (CEC)
| | - Suresh D. Sharma
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joy Y. Feng
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Adrian S. Ray
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Eric D. Smidansky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Maria L. Kireeva
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, United States of America
| | - Aesop Cho
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jason Perry
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jennifer E. Vela
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yeojin Park
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yang Tian
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Darius Babusis
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ona Barauskus
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Averell Gnatt
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mikhail Kashlev
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, United States of America
| | - Weidong Zhong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JJA); (CEC)
| |
Collapse
|
19
|
Kireeva ML, Opron K, Seibold SA, Domecq C, Cukier RI, Coulombe B, Kashlev M, Burton ZF. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. BMC BIOPHYSICS 2012; 5:11. [PMID: 22676913 PMCID: PMC3533926 DOI: 10.1186/2046-1682-5-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED BACKGROUND During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile "trigger loop" of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the "bridge helix" that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. RESULTS All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as "switch" residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. CONCLUSIONS Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation.
Collapse
Affiliation(s)
- Maria L Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Kristopher Opron
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319, USA
| | - Steve A Seibold
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319, USA
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
- Department of Chemistry, University of Saint Mary, Leavenworth, KS, 66048, USA
| | - Céline Domecq
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, CANADA
| | - Robert I Cukier
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| | - Benoit Coulombe
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, CANADA
- Department of Biochemistry, Université de Montréal, Montréal, Québec, H3C 3J7, CANADA
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319, USA
| |
Collapse
|
20
|
Kellinger MW, Ulrich S, Chong J, Kool ET, Wang D. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. J Am Chem Soc 2012; 134:8231-40. [PMID: 22509745 DOI: 10.1021/ja302077d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of "hydrogen bond deficient" nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson-Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3'-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3'-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.
Collapse
Affiliation(s)
- Matthew W Kellinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, California 92093-0625, United States
| | | | | | | | | |
Collapse
|
21
|
Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M. Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation. J Biol Chem 2011; 286:30898-30910. [PMID: 21730074 DOI: 10.1074/jbc.m111.260844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fork loop 2 is a small semiconservative segment of the larger fork domain in the second largest Rpb2 subunit of RNA polymerase II (Pol II). This flexible loop, juxtaposed at the leading edge of transcription bubble, has been proposed to participate in DNA strand separation, translocation along DNA, and NTP loading to Pol II during elongation. Here we show that the Rpb2 mutant carrying a deletion of the flexible part of the loop is not lethal in yeast. The mutation exhibits no defects in DNA melting and translocation in vitro but confers a moderate decrease of the catalytic activity of the enzyme caused by the impaired sequestration of the NTP substrate in the active center prior to catalysis. In the structural model of the Pol II elongation complex, fork loop 2 directly interacts with an unpaired DNA residue in the non-template DNA strand one nucleotide ahead from the active center (the i+2 position). We showed that elimination of this putative interaction by replacement of the i+2 residue with an abasic site inhibits Pol II activity to the same degree as the deletion of fork loop 2. This replacement has no detectable effect on the activity of the mutant enzyme. We provide direct evidence that interaction of fork loop 2 with the non-template DNA strand facilitates NTP sequestration through interaction with the adjacent segment of the fork domain involved in the active center of Pol II.
Collapse
Affiliation(s)
- Maria L Kireeva
- NCI-Frederick, National Institutes of Health, Center for Cancer Research, Frederick, Maryland 21702-1201
| | - Céline Domecq
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montréal, Québec, H2W 1R7 Canada
| | - Benoit Coulombe
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montréal, Québec, H2W 1R7 Canada
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Mikhail Kashlev
- NCI-Frederick, National Institutes of Health, Center for Cancer Research, Frederick, Maryland 21702-1201.
| |
Collapse
|
22
|
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription. Proc Natl Acad Sci U S A 2011; 108:6079-84. [PMID: 21447716 DOI: 10.1073/pnas.1011274108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulation of RNA synthesis by RNA polymerase (RNAP) is essential for proper gene expression. Crystal structures of RNAP reveal two channels: the main channel that contains the downstream DNA and a secondary channel that leads directly to the catalytic site. Although nucleoside triphosphates (NTPs) have been seen only in the catalytic site and the secondary channel in these structures, several models of transcription elongation, based on biochemical studies, propose that template-dependent binding of NTPs in the main channel regulates RNA synthesis. These models, however, remain controversial. We used transient state kinetics and a mutant of RNAP to investigate the role of the main channel in regulating nucleotide incorporation. Our data indicate that a NTP specific for the i + 2 template position can bind to a noncatalytic site and increase the rate of RNA synthesis and that the NTP bound to this site can be shuttled directly into the catalytic site. We also identify fork loop 2, which lies across from the downstream DNA, as a functional component of this site. Taken together, our data support the existence of a noncatalytic template-specific NTP binding site in the main channel that is involved in the regulation of nucleotide incorporation. NTP binding to this site could promote high-fidelity processive synthesis under a variety of environmental conditions and allow DNA sequence-mediated regulatory signals to be communicated to the active site.
Collapse
|
23
|
Feig M, Burton ZF. RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Biophys J 2011; 99:2577-86. [PMID: 20959099 DOI: 10.1016/j.bpj.2010.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/28/2010] [Accepted: 08/10/2010] [Indexed: 10/18/2022] Open
Abstract
RNA polymerase II is the central eukaryotic enzyme in transcription from DNA to RNA. The dynamics of RNA polymerase II is described from molecular-dynamics simulations started from two crystal structures with open and closed trigger loop (TL) forms. Dynamic transitions between neutral and forward translocated states were observed, especially for the downstream DNA duplex. Dynamic rearrangements were also seen in the active site environment, including conformations in which the active site nucleotide assumed a possibly precatalytic conformation in close proximity to the terminal 3'-hydroxyl of the nascent RNA. Because nucleic acid translocation was observed primarily in the simulations with an open TL structure, whereas close approach of the active site nucleotide to the terminal RNA ribose predominantly occurred in the closed TL structure, a modified Brownian ratchet mechanism is proposed whereby thermally driven translocation is only possible with an open TL, and fidelity control and catalysis require TL closing.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.
| | | |
Collapse
|
24
|
Tang GQ, Anand VS, Patel SS. Fluorescence-based assay to measure the real-time kinetics of nucleotide incorporation during transcription elongation. J Mol Biol 2010; 405:666-78. [PMID: 21035457 DOI: 10.1016/j.jmb.2010.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 11/15/2022]
Abstract
Understanding the mechanism and fidelity of transcription by the RNA polymerase (RNAP) requires measurement of the dissociation constant (K(d)) of correct and incorrect NTPs and their incorporation rate constants (k(pol)). Currently, such parameters are obtained from radiometric-based assays that are both tedious and discontinuous. Here, we report a fluorescence-based assay for measuring the real-time kinetics of single-nucleotide incorporation during transcription elongation. The fluorescent adenine analogue 2-aminopurine was incorporated at various single positions in the template or the nontemplate strand of the promoter-free elongation substrate. On addition of the correct NTP to the T7 RNAP-DNA, 2-aminopurine fluorescence increased rapidly and exponentially with a rate constant similar to the RNA extension rate obtained from the radiometric assay. The fluorescence stopped-flow assay, therefore, provides a high-throughput way to measure the kinetic parameters of RNA synthesis. Using this assay, we report the k(pol) and K(d) of all four correct NTP additions by T7 RNAP, which showed a range of values of 145-190 s(-1) and 28-124 μM, respectively. The fluorescent elongation substrates were used to determine the misincorporation kinetics as well, which showed that T7 RNAP discriminates against incorrect NTP both at the nucleotide binding and incorporation steps. The fluorescence-based assay should be generally applicable to all DNA-dependent RNAPs, as they use similar elongation substrates. It can be used to elucidate the mechanism, fidelity, and sequence dependency of transcription and is a rapid means to screen for inhibitors of RNAPs for therapeutic purposes.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
25
|
Pupov DV, Kulbachinskiy AV. Structural dynamics of the active center of multisubunit RNA polymerases during RNA synthesis and proofreading. Mol Biol 2010. [DOI: 10.1134/s0026893310040023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Seibold SA, Singh BN, Zhang C, Kireeva M, Domecq C, Bouchard A, Nazione AM, Feig M, Cukier RI, Coulombe B, Kashlev M, Hampsey M, Burton ZF. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:575-87. [PMID: 20478425 DOI: 10.1016/j.bbagrm.2010.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 05/07/2010] [Indexed: 01/22/2023]
Abstract
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP-NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant beta R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge alpha-helix, the extended fork loop, the active site, and the trigger loop-trigger helix is apparent and adversely affected in beta R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site "latch" assembly that includes a key trigger helix residue Tt beta' H1242 and highly conserved active site residues beta E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.
Collapse
Affiliation(s)
- Steve A Seibold
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Kireeva M, Kashlev M, Burton ZF. Translocation by multi-subunit RNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:389-401. [PMID: 20097318 DOI: 10.1016/j.bbagrm.2010.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/30/2022]
Abstract
DNA template and RNA/DNA hybrid movement through RNA polymerase (RNAP) is referred to as "translocation". Because nucleic acid movement is coupled to NTP loading, pyrophosphate release, and conformational changes, the precise ordering of events during bond addition is consequential. Moreover, based on several lines of experimental evidence, translocation, pyrophosphate release or an associated conformational change may determine the transcription elongation rate. In this review we discuss various models of translocation, the data supporting the hypothesis that translocation rate determines transcription elongation rate and also data that may be inconsistent with this point of view. A model of the nucleotide addition cycle accommodating available experimental data is proposed. On the basis of this model, the molecular mechanisms regulating translocation and potential routes for NTP entry are discussed.
Collapse
Affiliation(s)
- Maria Kireeva
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
29
|
Svetlov V, Nudler E. Macromolecular micromovements: how RNA polymerase translocates. Curr Opin Struct Biol 2009; 19:701-7. [PMID: 19889534 DOI: 10.1016/j.sbi.2009.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/12/2009] [Accepted: 10/07/2009] [Indexed: 01/22/2023]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize RNA molecules thousands of nucleotides long. The reiterative reaction of nucleotide condensation occurs at rates of tens of nucleotides per second, invariably linked to the translocation of the enzyme along the DNA template, or threading of the DNA and the nascent RNA molecule through the enzyme. Reiteration of the nucleotide addition/translocation cycle without dissociation from the DNA and RNA requires both isomorphic and metamorphic conformational flexibility of a magnitude substantial enough to accommodate the requisite molecular motions. Here we review some of the more recently acquired insights into the structural flexibility and morphic fluctuations of RNA polymerases and their mechanistic implications.
Collapse
Affiliation(s)
- Vladimir Svetlov
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|