1
|
Bourel L, Bray F, Vivier S, Flament S, Guilbert L, Chepy A, Rolando C, Launay D, Dubucquoi S, Sobanski V. Comparative Analysis of Laboratory-Scale Immunoglobulin G Purification Methods from Human Serum. J Proteome Res 2024; 23:3933-3943. [PMID: 39140748 PMCID: PMC11468067 DOI: 10.1021/acs.jproteome.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Immunoglobulin G (IgG) purification is a critical process for evaluating its role in autoimmune diseases, which are defined by the occurrence of autoantibodies. Affinity chromatography with protein G is widely considered to be the optimal technique for laboratory-scale purification. However, this technique has some limitations, including the exposure of IgG to low pH, which can compromise the quality of the purified IgG. Here, we show that alternative methods for IgG purification are possible while maintaining the quality of IgG. Different techniques for IgG purification from serum were evaluated and compared with protein G-based approaches: Melon Gel, caprylic acid-ammonium sulfate (CAAS) precipitation, anion-exchange chromatography with diethylamino ethyl (DEAE) following ammonium sulfate (AS) precipitation, and AS precipitation alone. The results demonstrated that the purification yield of these techniques surpassed that of protein G. However, differences in the purity of IgG were observed using GeLC-MS/MS. The avidity of purified IgG against selected targets (SARS-CoV-2 and topoisomerase-I) was similar between purified IgG obtained using all techniques and unpurified sera. Our work provides valuable insights for future studies of IgG function by recommending alternative purification methods that offer advantages in terms of yield, time efficiency, cost-effectiveness, and milder pH conditions than protein G.
Collapse
Affiliation(s)
- Louisa Bourel
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
| | - Fabrice Bray
- Univ.
Lille, CNRS, UAR 3290 − MSAP − Miniaturisation pour
la Synthèse, l’Analyse et la Protéomique, F-59000 Lille, France
| | - Solange Vivier
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
| | - Stéphanie Flament
- Univ.
Lille, CNRS, UAR 3290 − MSAP − Miniaturisation pour
la Synthèse, l’Analyse et la Protéomique, F-59000 Lille, France
| | - Lucile Guilbert
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
- CHU
Lille, Institut d’Immunologie, Centre de Biologie Pathologie, 59000 Lille, France
| | - Aurélien Chepy
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
- CHU
Lille, Département de Médecine Interne Et Immunologie
Clinique, Centre de référence des Maladies Auto-Immunes
et Auto-inflammatoires Systémiques rares de l’Adulte
du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Christian Rolando
- Univ.
Lille, CNRS, UAR 3290 − MSAP − Miniaturisation pour
la Synthèse, l’Analyse et la Protéomique, F-59000 Lille, France
- Shrieking
Sixties, 1-3 Allée
Lavoisier, F-59650 Villeneuve-d’Ascq, France
| | - David Launay
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
- CHU
Lille, Département de Médecine Interne Et Immunologie
Clinique, Centre de référence des Maladies Auto-Immunes
et Auto-inflammatoires Systémiques rares de l’Adulte
du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Sylvain Dubucquoi
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
- CHU
Lille, Institut d’Immunologie, Centre de Biologie Pathologie, 59000 Lille, France
| | - Vincent Sobanski
- Univ.
Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational
Research in Inflammation, 59000 Lille, France
- CHU
Lille, Département de Médecine Interne Et Immunologie
Clinique, Centre de référence des Maladies Auto-Immunes
et Auto-inflammatoires Systémiques rares de l’Adulte
du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
- Institut
Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
2
|
Puzari U, Khan MR, Mukherjee AK. Development of a gold nanoparticle-based novel diagnostic prototype for in vivo detection of Indian red scorpion ( Mesobuthus tamulus) venom. Toxicon X 2024; 23:100203. [PMID: 39263685 PMCID: PMC11387954 DOI: 10.1016/j.toxcx.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Indian red scorpion Mesobuthus tamulus is responsible for substantial mortality in India and Sri Lanka; however, no specific diagnostic method is available to detect the venom of this scorpion in envenomed plasma or body fluid. Therefore, we have proposed a novel, simple, and rapid method for detecting M. tamulus venom (MTV) in the plasma of envenomed animals using polyclonal antibodies (PAb) raised against three modified custom peptides representing the antigenic epitopes of K+ (Tamapin) and Na+ (α-neurotoxin) channel toxins, the two major MTV toxins identified by proteomic analysis. The optimum PAb formulation containing PAb 1, 2, and 3 in proportion (1:1:1, w/w/w) acted synergistically, demonstrating significantly higher immunological recognition of MTV than anti-scorpion antivenom (developed against native toxins) and individual antibodies against peptide immunogens. The PAb formulation could detect MTV optimally in envenomed rat plasma (intravenous and subcutaneous routes) at 30-60 min post-injection. The acetonitrile precipitation method developed in this study to augment the MTV detection sensitivity enriched the low molecular mass peptide toxins in envenomed rat plasma, which was ascertained by mass spectrometry analysis. The gold nanoparticles conjugated PAb formulation, characterised by biophysical techniques such as Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), demonstrated their interaction with low molecular mass MTV peptide toxins in envenomed rat plasma. This interaction results in the accumulation of the gold nanoparticles, thus leading to signal change in absorbance spectra that can be discerned within 10 min. From a standard curve of MTV spiked plasma, the quantity of MTV in envenomed rat plasma could be determined by gold nanoparticle-PAb formulation conjugate.
Collapse
Affiliation(s)
- Upasana Puzari
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
3
|
Weston K, Fulton JE, Owen J. Antigen specificity affects analysis of natural antibodies. Front Immunol 2024; 15:1448320. [PMID: 39170611 PMCID: PMC11335478 DOI: 10.3389/fimmu.2024.1448320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Natural antibodies are used to compare immune systems across taxa, to study wildlife disease ecology, and as selection markers in livestock breeding. These immunoglobulins are present prior to immune stimulation. They are described as having low antigen specificity or polyreactive binding and are measured by binding to self-antigens or novel exogenous proteins. Most studies use only one or two antigens to measure natural antibodies and ignore potential effects of antigen specificity in analyses. It remains unclear how different antigen-specific natural antibodies are related or how diversity among natural antibodies may affect analyses of these immunoglobulins. Using genetically distinct lines of chickens as a model system, we tested the hypotheses that (1) antigen-specific natural antibodies are independent of each other and (2) antigen specificity affects the comparison of natural antibodies among animals. We used blood cell agglutination and enzyme-linked immunosorbent assays to measure levels of natural antibodies binding to four antigens: (i) rabbit erythrocytes, (ii) keyhole limpet hemocyanin, (iii) phytohemagglutinin, or (iv) ovalbumin. We observed that levels of antigen specific natural antibodies were not correlated. There were significant differences in levels of natural antibodies among lines of chickens, indicating genetic variation for natural antibody production. However, line distinctions were not consistent among antigen specific natural antibodies. These data show that natural antibodies are a pool of relatively distinct immunoglobulins, and that antigen specificity may affect interpretation of natural antibody function and comparative immunology.
Collapse
Affiliation(s)
- Kendra Weston
- Department of Entomology, Washington State University, Pullman, WA, United States
| | | | - Jeb Owen
- Department of Entomology, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Tereshin MN, Melikhova TD, Eletskaya BZ, Ivanova EA, Onoprienko LV, Makarov DA, Razumikhin MV, Myagkikh IV, Fabrichniy IP, Stepanenko VN. Biocatalytic Method for Producing an Affinity Resin for the Isolation of Immunoglobulins. Biomolecules 2024; 14:849. [PMID: 39062563 PMCID: PMC11274487 DOI: 10.3390/biom14070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Affinity chromatography is a widely used technique for antibody isolation. This article presents the successful synthesis of a novel affinity resin with a mutant form of protein A (BsrtA) immobilized on it as a ligand. The key aspect of the described process is the biocatalytic immobilization of the ligand onto the matrix using the sortase A enzyme. Moreover, we used a matrix with primary amino groups without modification, which greatly simplifies the synthesis process. The resulting resin shows a high dynamic binding capacity (up to 50 mg IgG per 1 mL of sorbent). It also demonstrates high tolerance to 0.1 M NaOH treatment and maintains its effectiveness even after 100 binding, elution, and sanitization cycles.
Collapse
Affiliation(s)
- Mikhail N. Tereshin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia; (M.N.T.); (V.N.S.)
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | - Tatiana D. Melikhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Barbara Z. Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Elena A. Ivanova
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia; (E.A.I.); (I.P.F.)
| | - Lyudmila V. Onoprienko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Dmitry A. Makarov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | | | - Igor V. Myagkikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117437 Moscow, Russia; (T.D.M.); (L.V.O.); (I.V.M.)
| | - Igor P. Fabrichniy
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia; (E.A.I.); (I.P.F.)
| | - Vasiliy N. Stepanenko
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia; (M.N.T.); (V.N.S.)
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| |
Collapse
|
5
|
Ahmed A, Fujimura NA, Tahir S, Akram M, Abbas Z, Riaz M, Raza A, Abbas R, Ahmed N. Soluble and insoluble expression of recombinant human interleukin-2 protein using pET expression vector in Escherichia coli. Prep Biochem Biotechnol 2024:1-13. [PMID: 38824503 DOI: 10.1080/10826068.2024.2361146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Interleukin-2 has emerged as a potent protein-based drug to treat various cancers, AIDS, and autoimmune diseases. Despite its immense requirement, the production procedures are inefficient to meet the demand. Therefore, efficient production procedures must be adopted to improve protein yield and decrease procedural loss. This study analyzed cytoplasmic and periplasmic IL-2 expression for increased protein yield and significant biological activity. The study is focused on cloning IL-2 into a pET-SUMO and pET-28a vector that expresses IL-2 in soluble form and inclusion bodies, respectively. Both constructs were expressed into different E. coli expression strains, but the periplasmic and cytoplasmic expression of IL-2 was highest in overnight culture in Rosetta 2 (DE3). Therefore, E. coli Rosetta 2 (DE3) was selected for large-scale production and purification. Purified IL-2 was characterized by SDS-PAGE and western blotting, while its biological activity was determined using MTT bioassay. The results depict that the periplasmic and cytoplasmic IL-2 achieved adequate purification, yielding 0.86 and 0.51 mg/mL, respectively, with significant cytotoxic activity of periplasmic and cytoplasmic IL-2. Periplasmic IL-2 has shown better yield and significant biological activity in vitro which describes its attainment of native protein structure and function.
Collapse
Affiliation(s)
- Atif Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zaheer Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maira Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rabia Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Ma J, Tian Z, Shi Q, Dong X, Sun Y. Affinity chromatography for virus-like particle manufacturing: Challenges, solutions, and perspectives. J Chromatogr A 2024; 1721:464851. [PMID: 38574547 DOI: 10.1016/j.chroma.2024.464851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The increasing medical application of virus-like particles (VLPs), notably vaccines and viral vectors, has increased the demand for commercial VLP production. However, VLP manufacturing has not yet reached the efficiency level achieved for recombinant protein therapeutics, especially in downstream processing. This review provides a comprehensive analysis of the challenges associated with affinity chromatography for VLP purification with respect to the diversity and complexity of VLPs and the associated upstream and downstream processes. The use of engineered affinity ligands and matrices for affinity chromatography is first discussed. Although several representative affinity ligands are currently available for VLP purification, most of them have difficulty in balancing ligand universality, ligand selectivity and mild operation conditions. Then, phage display technology and computer-assisted design are discussed as efficient methods for the rapid discovery of high-affinity peptide ligands. Finally, the VLP purification by affinity chromatography is analyzed. The process is significantly influenced by virus size and variation, ligand type and chromatographic mode. To address the updated regulatory requirements and epidemic outbreaks, technical innovations in affinity chromatography and process intensification and standardization in VLP purification should be promoted to achieve rapid process development and highly efficient VLP manufacturing, and emphasis is given to the discovery of universal ligands, applications of gigaporous matrices and platform technology. It is expected that the information in this review can provide a better understanding of the affinity chromatography methods available for VLP purification and offer useful guidance for the development of affinity chromatography for VLP manufacturing in the decades to come.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Abdul Kareem ZG, Yasser Al-Zamily OM, Al-Khafaji NSK. Purification and characterization of α-galactosidase isolated from Klebsiella pneumoniae in the human oral cavity. Int J Biol Macromol 2024; 261:129550. [PMID: 38244734 DOI: 10.1016/j.ijbiomac.2024.129550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The enzyme α-Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) is an exoglycosidase that hydrolyzes the terminal α-galactosyl moieties of glycolipids and glycoproteins. It is ubiquitous in nature and possesses extensive applications in the food, pharma, and biotechnology industries. The present study aimed to purify α-galactosidase from Klebsiella pneumoniae, a bacterium isolated from the human oral cavity. The purification steps involved ammonium sulfate precipitation (70 %), dialysis, ion exchange chromatography using a DEAE-cellulose column, and affinity monolith chromatography. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis was used to determine the molecular weight of the purified enzyme. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were determined by using p-nitrophenyl-α-D-galactopyranoside as substrate. The results showed that the purification fold, specific activity, and yield were 126.52, 138.58 units/mg, and 21.5 %, respectively. The SDS-PAGE showed that the molecular weight of the purified enzyme was 75 kDa. The optimum pH and temperature of the purified α-galactosidase were detected at pH 6.0 and 50 °C, respectively. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were 4.6 mM and 769.23 U/ml, respectively. α-galactosidase from Klebsiella pneumoniae was purified and characterized. (SDS-PAGE) analysis showed that the purified enzyme appeared as single band with a molecular weight of 75 kDa.
Collapse
Affiliation(s)
- Zainab G Abdul Kareem
- Department of Chemistry, College of Science, University of Babylon, Iraq; Department of Basic Science, College of Dentistry, University of Babylon, Iraq.
| | | | | |
Collapse
|
8
|
Jin H, Cui D, Fan Y, Li G, Zhong Z, Wang Y. Recent advances in bioaffinity strategies for preclinical and clinical drug discovery: Screening natural products, small molecules and antibodies. Drug Discov Today 2024; 29:103885. [PMID: 38278476 DOI: 10.1016/j.drudis.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Bioaffinity drug screening strategies have gained popularity in preclinical and clinical drug discovery for natural products, small molecules and antibodies owing to their superior selectivity, the large number of compounds to be screened and their ability to minimize the time and expenses of the drug discovery process. This paper provides a systematic summary of the principles of commonly used bioaffinity-based screening methods, elaborates on the success of bioaffinity in clinical drug development and summarizes the active compounds, preclinical drugs and marketed drugs obtained through affinity screening methods. Owing to the high demand for new drugs, bioaffinity-guided screening techniques will play a greater part in clinical drug development.
Collapse
Affiliation(s)
- Haochun Jin
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dianxin Cui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
9
|
Qi C, Chen L. Progress of ligand-modified agarose microspheres for protein isolation and purification. Mikrochim Acta 2024; 191:149. [PMID: 38376601 DOI: 10.1007/s00604-024-06224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Proteins are the material basis of life and the primary carriers of life activities, containing various impurities that must be removed before use. To keep pace with the increasing complexity of protein samples, it is essential to constantly work on developing new purification technologies for downstream processes. While traditional downstream purification methods rely heavily on protein A affinity chromatography, there is still a lot of interest in finding safer and more cost-effective alternatives to protein A. Many non-affinity ligands and technologies have also been developed in biological purification recently. Here, the current status of biotechnology and the progress of protein separation technology from 2018 to 2023 are reviewed from the aspects of new preparation methods and new composite materials of commonly used separation media. The research status of new ligands with different mechanisms of action was reviewed, including the expanded application of affinity ligands, the development prospect of biotechnology such as polymer grafting, continuous column technology, and its new applications.
Collapse
Affiliation(s)
- Chongdi Qi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lei Chen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
10
|
Real-Fernández F, Rusche H, Papini AM, Rovero P. Affinity Chromatography for Anti-Glucosylated Adhesin Antibody Purification: Depletion of Nonspecific Anti-Protein Antibodies and Antibody Recovery with Unconventional Elution Solutions. Methods Mol Biol 2024; 2821:157-163. [PMID: 38997487 DOI: 10.1007/978-1-0716-3914-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Antibodies from sera of a multiple sclerosis (MS) patient subpopulation preferentially recognize the hyperglucosylated adhesin protein HMW1ct(Glc) of the pathogen Haemophilus influenzae. This protein is the first example of an N-glucosylated native antigen candidate, potentially triggering pathogenic antibodies in MS. Specific antibodies in patients' sera can be isolated exploiting their biospecific interaction with antigens by affinity chromatography. Herein, the proteins HMW1ct and HMW1ct(Glc) were first immobilized on appropriately functionalized supports and further used to purify antibodies directly from MS patients sera. We describe a protocol to obtain an antibody fraction specifically recognizing the glusosylated residues on the HMW1ct(Glc) adhesin protein depleting antibodies to the unglucosylated HMW1ct sequence. Different elution solutions have been tested to recover the purified antibody fraction, strongly bound to the immobilized HMW1ct(Glc) adhesin protein.
Collapse
Affiliation(s)
- Feliciana Real-Fernández
- Institute of Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | | | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, Division of Pharmaceutical Sciences and Nutraceutic, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
11
|
Stuart L. Production and Purification of Antibodies in Chinese Hamster Ovary Cells. Methods Mol Biol 2024; 2762:183-190. [PMID: 38315366 DOI: 10.1007/978-1-0716-3666-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Antibodies are versatile biological molecules with widespread applications in research and medicine. This protocol outlines the generation of monoclonal IgG antibodies from Chinese hamster ovary cells. It includes steps for cell maintenance, transient transfection, and antibody purification via protein A affinity chromatography. The methods described are intended for the production of milligram amounts of protein but can be adapted for most small- to mid-scale applications.
Collapse
|
12
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Rahmati S, Bagherzadeh K, Arab SS, Torkashvand F, Amanlou M, Vaziri B. Computational designing of the ligands of Protein L affinity chromatography based on molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023:1-11. [PMID: 37855377 DOI: 10.1080/07391102.2023.2268219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Protein L is a multidomain protein from Peptostreptococcus magnus with binding affinity to kappa light chain of human immunoglobulin (Ig) which is used for the purification of antibody fragments by affinity chromatography. The advances in protein engineering and computational biology approaches lead to the development of engineered affinity ligands with improved properties including binding affinity. In this study, molecular dynamics simulations (MDs) and Osprey software were used to design single B domains of the Protein L with higher affinity to antibody fragments. The modified B domains were then polymerized to ligand with six B domains by homology modeling methods. The results showed that single B domain mutants of MB1 (Thr865Trp) and MB2 (Thr847Met-Thr865Trp) had higher binding affinity to Fab compared to the wild single B domain. Also, MDs and molecular docking results showed that the polymerized Proteins L including the wild and mutated six B domains (6B0, 6B1, and 6B2) were stable during MDs and the two mutants of 6B1 and 6B2 showed higher binding affinity to Fab relative to the wild type.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Doltade S, Saldanha M, Patil V, Dandekar P, Jain R. Statistically-aided development of protein A affinity chromatography for enhancing recovery and controlling quality of a monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123829. [PMID: 37478555 DOI: 10.1016/j.jchromb.2023.123829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Protein A chromatography is widely used for isolation of monoclonal antibodies (mAbs) from cell culture components. In this study, the effect of different process parameters of the Protein A purification namely, binding pH, elution pH, flow rate, neutralization pH and tween concentration, on the concentration and quality of the purified mAb were evaluated. Using design of experiments approach, the critical process parameters of protein A chromatography were identified and experimentally optimized. Their impact on quality attributes, such as size variants and charge variants, of the mAb was studied. Multivariate data analysis was subsequently performed using multiple linear regression and partial least squares regression methods. It was observed that the elution pH primarily governed the concentration of the purified mAb and the content of monomers and aggregates, while the tween concentration primarily influenced the main peak of the charge variants. This is the first study that evaluates the impact of tween concentration in buffers on the protein A chromatography purification step. These studies helped in identifying the design space and defining the target robust and optimal setpoints of the responses, which were subsequently verified experimentally. These setpoints not only passed the target criteria but also resulted in the highest recoveries during the investigation. Through this statistically-aided approach, an optimized and robust protein A chromatography process was rationally developed for purification of mAbs, while achieving the desired product quality. This study highlights the influence of multiple parameters of the protein A purification process on critical quality attributes of mAbs, such as the size and charge variants, which has been a very scarcely explored area.
Collapse
Affiliation(s)
- Shashikant Doltade
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Marianne Saldanha
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Vaibhav Patil
- Sartorius Stedim India Private Limited, No. 69/2 & 69/3, Jakkasandra, Nelamangala, Bangalore 562123, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
15
|
Kaya ZZ, Serdar M, Aksungar F, Kilercik M, Serteser M, Baykal AT. Rapid detection of serum free light chains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:132-140. [PMID: 36734073 DOI: 10.1177/14690667231153616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Introduction: Serum free light chain (FLC) measurements are increasingly prominent for patients with plasma cell disorders (PCDs) in screening, prognostic stratification, and monitoring therapy responses. Objectives: We aimed to develop a sensitive, reliable, and accurate method for diagnosing PCDs that can notably decrease the time and cost of current methods. Methods: Here, we present a novel approach for FLC measurement using immunoenrichment on micro-affinity chromatography in combination with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) detection. In this study, serum free kappa (κ) and free lambda (λ) light chain (LC) levels in the serum of 105 patients were compared between the nephelometric serum FLC quantification and MALDI-TOF MS detection. Results: Cohen's kappa coefficient between the MALDI-TOF MS-based method and the FLC assay revealed an almost perfect agreement in the case of normal (negative) results (κ = 0.92; 95% confidence interval (CI): 0.837 to 0.968) and a good agreement in the case of increased (positive) results (κ = 0.76; 95% CI: 0.608 to 0.870). In Spearman's correlation analysis, the best correlation was found between serum free κ/λ ratios (r = 0.628, 0.496 to 0.732; p <0.0001). Our method showed sensitivity (92.5%) and specificity (76.3%) for discrimination between the κ/λ FLC ratio compared to the serum FLC assay. Conclusion: The proposed method can significantly contribute to diagnosing and monitoring PCDs as it can significantly be time-saving, cost-effective in FLC measurement.
Collapse
Affiliation(s)
- Zelal Zuhal Kaya
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fehime Aksungar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Meltem Kilercik
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Biochemistry, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Biochemistry, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
16
|
Zhu C, Han H, Chen Z, Shen Y, Zhang Q, Bao C, Qu JH, Wang Q, Jiang Z. Tetrapeptide-based mimotope affinity monolith for the enrichment and analysis of anti-HER2 antibody and antibody-drug conjugate. Anal Chim Acta 2023; 1246:340892. [PMID: 36764776 DOI: 10.1016/j.aca.2023.340892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Selective enrichment and analysis of therapeutic antibodies in biological fluids are crucial for the development of biopharmaceuticals. Recently, peptide-based affinity chromatography has exhibited fascinating prospects for antibody enrichment due to the high affinity and specificity of small peptides. However, the post-modification approach of peptide ligands on the material surface is complicated and time-consuming. In this study, a methacrylate modified tetrapeptide (m-EDPW) was firstly demonstrated as the affinity ligand of trastuzumab (Kd = 1.91 ± 1.81 μM). Next, the m-EDPW based affinity monolith was prepared using a facile one-step polymerization method, which could overcome the drawbacks of traditional post-modification preparation strategies. Based on the monolith as described above, a simple enrichment approach was developed under the optimal washing and elution conditions. Based on the excellent properties, such as high porosity (53.09%), weak electrostatic interaction and suitable affinity (1.00 ± 2.14 μM for anti-HER2 ADC), this novel monolith exhibited good specificity and recovery for antibodies (91.6% for trastuzumab, 98.37% for anti-HER2 ADC), and low nonspecific adsorption for human serum albumin (DBC10% = 0.5 mg/g polymer). Particularly, this material was successfully applied to enrich trastuzumab and its related antibody-drug conjugate (ADC) from different cell culture medias. The dynamic tracking analysis of ADC in the critical quality attributes (e.g., charge variants, drug to antibody ratio and subunit conjugation ratio) was also achieved by combining the enrichment approach, capillary electrophoresis or reversed phase liquid chromatography. In summary, the exploited peptide-based mimotope affinity materials showed a great potential for the application in biopharmaceutical analysis.
Collapse
Affiliation(s)
- Chendi Zhu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Hai Han
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yuan Shen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Qiaoxuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Cai Bao
- Bio-Thera Solutions, Ltd., Guangzhou, 510700, China
| | - Jia-Huan Qu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Qiqin Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Hirano A, Kanoh S, Shiraki K, Wada M, Kitamura M, Kato K. Selective and High-Capacity Binding of Immunoglobulin G to Zirconia Nanoparticles Modified with Phosphate Groups. Colloids Surf B Biointerfaces 2023; 226:113291. [PMID: 37031515 DOI: 10.1016/j.colsurfb.2023.113291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
High-performance and cost-effective purification is necessary for the development of antibody drugs. This study found that nanoparticles of zirconia modified with phosphate groups selectively adsorb immunoglobulin G (IgG) antibodies against serum proteins with high adsorption capacity. The IgG antibodies collected from the zirconia nanoparticle surfaces retain their molecular conformation. Importantly, zirconia nanoparticles have the highest affinity for human IgG antibodies among tested mammalian IgG antibodies. The affinity for human IgG subclasses is in the order IgG3 > IgG1 > IgG2, which contrasts with a conventional ligand (Protein A) that has a lower affinity for IgG3. Because zirconia nanoparticles are chemically and mechanically stable, they can be utilized for the purification of antibody drugs not only in batch methods but also in chromatography as a process upstream or downstream of Protein A chromatography and even as an alternative process.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Shogo Kanoh
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Masahiro Kitamura
- NGK Spark Plug-AIST Healthcare Materials Cooperative Research Laboratory, Nagoya, Aichi 463-8560, Japan
| | - Katsuya Kato
- NGK Spark Plug-AIST Healthcare Materials Cooperative Research Laboratory, Nagoya, Aichi 463-8560, Japan.
| |
Collapse
|
18
|
Dong Q, Yang M, Wang Y, Guan Y, Zhang W, Zhang Y. Peptide-crosslinked molecularly imprinted polymers for efficient separation of immunoglobulin G from human serum. Biomater Sci 2023; 11:1398-1407. [PMID: 36594639 DOI: 10.1039/d2bm01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low-cost and highly effective methods are highly desirable to replace the costly ethanol fractionation and affinity chromatography in IgG isolation from human plasma. Molecularly imprinted polymers (MIPs) of IgG are potential candidates, however, they still suffer from severe problems such as difficult template removal and low imprinting efficiency. Here, a recently developed strategy was adopted to overcome these problems. The MIPs were synthesized using poly(L-glutamic acid) (PLGA) peptide crosslinkers instead of commonly used crosslinkers, such as N,N-methylenebisacrylamide (BIS). Because of the pH-induced helix-coil transition and the precise folding of the peptide segments in the polymers, the imprint cavities can be enlarged by adjusting the pH from 5.0 to 7.0, but their original size and shape are restored when the pH is adjusted back. Therefore, the IgG template can be eluted completely under mild conditions, and significantly improved imprinting efficiency can be achieved. Compared with BIS-crosslinked MIP, 8.6 times more binding sites can be created by molecular imprinting PLGA-crosslinked MIP. The factors influencing the performance of the MIP were studied systematically. An optimized MIP with a high adsorption capacity (612.5 mg g-1), high IF (4.92), and high selectivity was obtained. The adsorption capacity and selectivity of the MIP are much higher than the previously reported IgG MIPs. Because of its high adsorption capacity and selectivity, it can separate IgG from human serum effectively, affording high purity products.
Collapse
Affiliation(s)
- Qiujing Dong
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengmeng Yang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yafei Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
19
|
Moreira AS, Bezemer S, Faria TQ, Detmers F, Hermans P, Sierkstra L, Coroadinha AS, Peixoto C. Implementation of Novel Affinity Ligand for Lentiviral Vector Purification. Int J Mol Sci 2023; 24:3354. [PMID: 36834764 PMCID: PMC9966744 DOI: 10.3390/ijms24043354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sandra Bezemer
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Tiago Q. Faria
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Frank Detmers
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Pim Hermans
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | | | - Ana Sofia Coroadinha
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
20
|
Ye D, Liu T, Li Y, Wang Y, Hu W, Zhu Z, Sun Y. Identification of fish spermatogenic cells through high-throughput immunofluorescence against testis with an antibody set. Front Endocrinol (Lausanne) 2023; 14:1044318. [PMID: 37077350 PMCID: PMC10106697 DOI: 10.3389/fendo.2023.1044318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Image-based identification and quantification of different types of spermatogenic cells is of great importance, not only for reproductive studies but also for genetic breeding. Here, we have developed antibodies against spermatogenesis-related proteins in zebrafish (Danio rerio), including Ddx4, Piwil1, Sycp3, and Pcna, and a high-throughput method for immunofluorescence analysis of zebrafish testicular sections. By immunofluorescence analysis of zebrafish testes, our results demonstrate that the expression of Ddx4 decreases progressively during spermatogenesis, Piwil1 is strongly expressed in type A spermatogonia and moderately expressed in type B spermatogonia, and Sycp3 has distinct expression patterns in different subtypes of spermatocytes. Additionally, we observed polar expression of Sycp3 and Pcna in primary spermatocytes at the leptotene stage. By a triple staining of Ddx4, Sycp3, and Pcna, different types/subtypes of spermatogenic cells were easily characterized. We further demonstrated the practicality of our antibodies in other fish species, including Chinese rare minnow (Gobiocypris rarus), common carp (Cyprinus carpio), blunt snout bream (Megalobrama amblycephala), rice field eel (Monopterus albus) and grass carp (Ctenopharyngodon idella). Finally, we proposed an integrated criterion for identifying different types/subtypes of spermatogenic cells in zebrafish and other fishes using this high-throughput immunofluorescence approach based on these antibodies. Therefore, our study provides a simple, practical, and efficient tool for the study of spermatogenesis in fish species.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
Li R, Zhang Y, Zhao J, Wang Y, Wang H, Zhang Z, Lin H, Li Z. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Farzi-Khajeh H, Toraby S, Akbarzadeh-Khiavi M, Safary A, Somi MH. Development of biomimetic triazine-based affinity ligands for efficient immunoglobulin G purification from human and rabbit plasma. J Chromatogr A 2022; 1684:463559. [DOI: 10.1016/j.chroma.2022.463559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
|
23
|
Fang YM, Zhang QL, Lin DQ, Yao SJ. One kind of challenging tetrapeptide biomimetic chromatographic resin for antibody separation. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123407. [DOI: 10.1016/j.jchromb.2022.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
24
|
Nakayama T, Kobayashi K, Kameda T, Hase M, Hirano A. Protein's Protein Corona: Nanoscale Size Evolution of Human Immunoglobulin G Aggregates Induced by Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32937-32947. [PMID: 35822632 DOI: 10.1021/acsami.2c08271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles are readily coated by proteins in biological systems. The protein layers on the nanoparticles, which are called the protein corona, influence the biological impacts of the nanoparticles, including internalization into cells and cytotoxicity. This study expands the scope of the nanoparticle's protein corona for exogenous artificial nanoparticles to that for exogenous proteinaceous nanoparticles. Specifically, this study addresses the formation of protein coronas on nanoscale human antibody aggregates with a radius of approximately 20-40 nm, where the antibody aggregates were induced by a pH shift from low to neutral pH. The size of the human immunoglobulin G (hIgG) aggregates grew to approximately 25 times the original size in the presence of human serum albumin (HSA). This size evolution was ascribed to the association of the hIgG aggregates, which was triggered by the formation of the hIgG aggregate's protein corona, i.e., protein's protein corona, consisting of the adsorbed HSA molecules. Because hIgG aggregate association was significantly reduced by the addition of 30-150 mM NaCl, it was attributed to electrostatic attraction, which was supported by molecular dynamics (MD) simulations. Currently, the use of antibodies as biopharmaceuticals is concerning because of undesired immune responses caused by antibody aggregates that are typically generated by a pH shift during the antibody purification process. The present findings suggest that nanoscale antibody aggregates form protein coronas induced by HSA and the resulting nanoscale antibody-HSA complexes are stable in blood containing approximately 150 mM salt ions, at least in terms of the size evolution. Mechanistic insights into protein corona formation on nanoscale antibody aggregates are useful for understanding the unintentional biological impacts of antibody drugs.
Collapse
Affiliation(s)
- Tomohito Nakayama
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Muneaki Hase
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
25
|
Lu L, Liu X, Zuo C, Zhou J, Zhu C, Zhang Z, Fillet M, Crommen J, Jiang Z, Wang Q. In vitro/in vivo degradation analysis of trastuzumab by combining specific capture on HER2 mimotope peptide modified material and LC-QTOF-MS. Anal Chim Acta 2022; 1225:340199. [DOI: 10.1016/j.aca.2022.340199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
|
26
|
Fab fragment immobilized immunoaffinity cryogels as a tool for human serum albumin purification: Characterization of Fab immobilized cryogels. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123311. [DOI: 10.1016/j.jchromb.2022.123311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
27
|
Xue A, Fan S. Matrices and Affinity Ligands for Antibody Purification and Corresponding Applications in Radiotherapy. Biomolecules 2022; 12:biom12060821. [PMID: 35740946 PMCID: PMC9221399 DOI: 10.3390/biom12060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Antibodies have become an important class of biological products in cancer treatments such as radiotherapy. The growing therapeutic applications have driven a demand for high-purity antibodies. Affinity chromatography with a high affinity and specificity has always been utilized to separate antibodies from complex mixtures. Quality chromatographic components (matrices and affinity ligands) have either been found or generated to increase the purity and yield of antibodies. More importantly, some matrices (mainly particles) and affinity ligands (including design protocols) for antibody purification can act as radiosensitizers or carriers for therapeutic radionuclides (or for radiosensitizers) either directly or indirectly to improve the therapeutic efficiency of radiotherapy. This paper provides a brief overview on the matrices and ligands used in affinity chromatography that are involved in antibody purification and emphasizes their applications in radiotherapy to enrich potential approaches for improving the efficacy of radiotherapy.
Collapse
|
28
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
29
|
Separation of Albumin from Bovine Serum Applying Ionic-Liquid-Based Aqueous Biphasic Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this work, the extraction and separation of bovine serum albumin (BSA) from its original matrix, i.e., bovine serum, was performed using a novel ionic-liquid-based aqueous biphasic system (IL-based ABS). To this end, imidazolium-, phosphonium-, and ammonium-based ILs, combined with the anions’ acetate, arginate and derived from Good Buffers, were synthesized, characterized, and applied in the development of ABS with K2HPO4/KH2PO4 buffer aqueous solutions at pH 7. Initial studies with commercial BSA revealed a preferential migration of the protein to the IL-rich phase, with extraction efficiencies of 100% obtained in a single-step. BSA recovery yields ranging between 64.0% and 84.9% were achieved, with the system comprising the IL tetrabutylammonium acetate leading to the maximum recovery yield. With this IL, BSA was directly extracted and separated from bovine serum using the respective ABS. Different serum dilutions were further investigated to improve the separation performance. Under the best identified conditions, BSA can be extracted from bovine serum with a recovery yield of 85.6% and a purity of 61.2%. Moreover, it is shown that the BSA secondary structure is maintained in the extraction process, i.e., after being extracted to the IL-rich phase. Overall, the new ABS herein proposed may be used as an alternative platform for the purification of BSA from serum samples and can be applied to other added-value proteins.
Collapse
|
30
|
Abstract
Antibodies are an integral part of many biological assays and biotherapeutics. However, the sources from which antibodies are derived frequently contain other contaminants which may interfere with assays or cause adverse reactions if administered in vivo. Therefore, a means of isolating these antibodies from their source at high levels of purity is critical. Affinity chromatography is currently one of the most widely applied methods for the purification of antibodies. This method relies on specific and reversible, interactions between antibody structures, or recombinant tags fused to these structures, and ligands immobilized on solid support matrices, generally within a column. Herein, common chromatographic methods applied to antibody purification are described. These include the purification of IgG, and its recombinant forms, through protein A, protein G and immobilized metal affinity chromatography.
Collapse
Affiliation(s)
- Arabelle Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland.
- Hamad Bin Khalifa University, Doha, Qatar.
- Qatar Foundation, Doha, Qatar.
| |
Collapse
|
31
|
Rahmati S, Torkashvand F, Amanlou M, Bagherzadeh K, Fard Esfahani P, Aghamirza Moghim Aliabadi H, Vaziri B. Computational Engineering of Protein L to Achieve an Optimal Affinity Chromatography Resin for Purification of Antibody Fragments. Anal Chem 2021; 93:15253-15261. [PMID: 34747593 DOI: 10.1021/acs.analchem.1c01871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein L affinity chromatography is a useful method for the purification of antibody fragments containing kappa light chains. In affinity chromatography, increasing the binding affinity leads to increased product purity, recovery, and dynamic binding capacity (DBC). In this study, molecular docking and molecular dynamics simulation techniques were used to design the engineered Protein L with higher affinity to the kappa light chain. Each engineered ligand was produced as a recombinant protein and coupled to a solid matrix. The purity, recovery, and DBC of the engineered resins were evaluated and then compared to those of a commercially available resin. The results showed important parameters for engineering more efficient Protein L ligands for affinity chromatography.
Collapse
Affiliation(s)
- Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Torkashvand
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Institute Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | | | | | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
32
|
Nascimento A, São Pedro MN, Pinto IF, Aires-Barros MR, Azevedo AM. Microfluidics as a high-throughput solution for chromatographic process development - The complexity of multimodal chromatography used as a proof of concept. J Chromatogr A 2021; 1658:462618. [PMID: 34666268 DOI: 10.1016/j.chroma.2021.462618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
High-throughput technologies are fundamental to expedite the implementation of novel purification platforms. The possibility of performing process development within short periods of time while saving consumables and biological material are prime features for any high-throughput screening device. In this work, a microfluidic device is evaluated as high-throughput solution for a complete study of chromatographic operation conditions on ten different multimodal resins. The potential of this class of purification solutions is generally hindered by its complexity. Taking this into consideration, the microfluidic platform was herein applied and assessed as a tool for high-throughput applications. The commercially available multimodal ligands were studied for the binding of three antibody-based biomolecules (polyclonal mixture of whole antibodies, Fab and Fc fragments) at different pH and salt conditions, in a total of 450 experiments. The results obtained with the microfluidic device were comparable to a standard 96-well filtering microplate high-throughput tool. Additionally, five of the ten multimodal ligands tested were packed into a bench-scale column to perform a final validation of the microfluidic results obtained. All the data acquired in this work using different screening protocols corroborate each other, showing that microfluidic chromatography is a valuable tool for the fast implementation of a new purification step, particularly, if the goal is to narrow the downstream possibilities by being a first point of decision.
Collapse
Affiliation(s)
- André Nascimento
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana N São Pedro
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês F Pinto
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Maria Raquel Aires-Barros
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
33
|
Separation of recombinant monoclonal antibodies IgG201 from a cell culture supernatant using an integrated aqueous two-phase system with thermo-separating EOPO. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Naganuma C, Moriyama K, Suye SI, Fujita S. One-Step Surface Immobilization of Protein A on Hydrogel Nanofibers by Core-Shell Electrospinning for Capturing Antibodies. Int J Mol Sci 2021; 22:9857. [PMID: 34576021 PMCID: PMC8471760 DOI: 10.3390/ijms22189857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Nanofibers (NFs) are potential candidates as filter materials for affinity separation owing to their high liquid permeability based on their high porosity. Multiple and complex processes were conventionally performed to immobilize proteins for modifying NF surfaces. A simple method must be developed to immobilize proteins without impairing their biological activity. Herein, we succeeded in fabricating NFs with a core of cellulose acetate and a shell of hydrophilic polyvinyl alcohol immobilized with staphylococcal recombinant protein A by a one-step process based on core-shell electrospinning. A total of 12.9 mg/cm3 of antibody was captured in the fiber shell through high affinity with protein A immobilized in an aqueous environment of the hydrogel. The maximum adsorption site and dissociation constant evaluated by the Langmuir model were 87.8 µg and 1.37 µmol/L, respectively. The fiber sheet withstood triplicate use. Thus, our NF exhibited high potential as a material for membrane chromatography.
Collapse
Affiliation(s)
- Chihiro Naganuma
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
| | - Kosuke Moriyama
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
| | - Shin-ichiro Suye
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
35
|
Abstract
In the past 30 years, highly specific drugs, known as antibodies, have conquered the biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are successfully applied. However, recombinant production faces challenges. Process analytical tools for monitoring and controlling production processes are scarce and time-intensive. In the downstream process (DSP), affinity ligands are established as the primary and most important step, while the application of other methods is challenging. The use of these affinity ligands as monitoring tools would enable a platform technology to monitor process steps in the USP and DSP. In this review, we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further applications as process analytical tools.
Collapse
|
36
|
Abstract
A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run.
Collapse
|
37
|
Nuclear magnetic resonance immunoassay of tetanus antibodies based on the displacement of magnetic nanoparticles. Anal Bioanal Chem 2021; 413:1461-1471. [PMID: 33491121 DOI: 10.1007/s00216-020-03112-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
A nuclear magnetic resonance (NMR) immunoassay based on the application of carbon-coated iron nanoparticles conjugated with recognition molecules was designed. The principle of the assay is that ELISA plates are coated with a capture element, and then an analyte is added and detected by conjugating the magnetic nanoparticles with recognition molecules. Afterwards, the elution solution (0.1-M sodium hydroxide) is added to displace the magnetic nanoparticles from the well surfaces into the solution. The detached magnetic nanoparticles reduce transverse relaxation time (T2) values of protons from the surrounding solution. A portable NMR relaxometer is used to measure the T2. Magnetic nanoparticles conjugated with streptavidin, monoclonal antibodies, and protein G were applied for the detection of biotinylated albumin, prostate-specific antigen, and IgG specific to tetanus toxoid (TT). The limit of detection of anti-TT IgG was 0.08-0.12 mIU/mL. The reproducibility of the assay was within the acceptable range (CV < 7.4%). The key novelty of the immunoassay is that the displacement of the nanoparticles from the solid support by the elution solution allows the advantages of the solid phase assay to be combined with the sensitive detection of the T2 changes in a volume of liquid.
Collapse
|
38
|
De-Simone SG, Provance DW. Lectin Affinity Chromatography: An Efficient Method to Purify Horse IgG3. Methods Mol Biol 2021; 2178:301-310. [PMID: 33128757 DOI: 10.1007/978-1-0716-0775-6_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Affinity chromatography is a separation method based on a specific binding interaction between an immobilized ligand and its binding partner. An important class of ligands for the effective separation and purification of biotechnologically important substances is lectins, a group of naturally occurring molecules widely found in plants that display a range of specificities to bind different sugars. As sugars are often added to proteins through the process of glycosylation, ∼1/3 of all genetically encoded proteins are glycosylated, numerous cognate pairs of lectins with glycosylation groups have been discovered. Their specific binding interactions have not only allowed the development of numerous methodological strategies involving immobilized lectins to isolate molecules of interests but also for understanding the intermolecular interactions and alterations in glycosylation during a diverse set of biological phenomena, including tumor cell metastasis, intracellular communication, and inflammation. In this chapter, we describe a basic procedure for the separation of horse antibody classes by affinity chromatography based on differences in their glycosylation patterns. This procedure has been utilized for the purification of horse IgG3 (hoIgG3) from other six Ig from equine sera in a single step by using an Artocarpus integrifolia Jacalin column. This class of antibody comprises the therapeutic fraction generated in equine for passive antibody therapy and can serve as a biomarker for patient hypersensitivity. During the course of developing the protocol, the affinity interaction constant between the huIgE-hypersensitive immunoglobulin and the purified hoIgG3 was also determined.
Collapse
Affiliation(s)
- Salvatore G De-Simone
- FIOCRUZ, Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected of Population Diseases (INCT-INDP), Rio de Janeiro, RJ, Brazil. .,FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Rio de Janeiro, RJ, Brazil. .,Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói, RJ, Brazil.
| | - David W Provance
- FIOCRUZ, Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected of Population Diseases (INCT-INDP), Rio de Janeiro, RJ, Brazil.,FIOCRUZ, Oswaldo Cruz Institute, Interdisciplinar Laboratory of Medical Research, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Petrović T, Trbojević-Akmačić I. Lectin and Liquid Chromatography-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:29-72. [PMID: 34687007 DOI: 10.1007/978-3-030-76912-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunoglobulin (Ig) glycosylation has been shown to dramatically affect its structure and effector functions. Ig glycosylation changes have been associated with different diseases and show a promising biomarker potential for diagnosis and prognosis of disease advancement. On the other hand, therapeutic biomolecules based on structural and functional features of Igs demand stringent quality control during the production process to ensure their safety and efficacy. Liquid chromatography (LC) and lectin-based methods are routinely used in Ig glycosylation analysis complementary to other analytical methods, e.g., mass spectrometry and capillary electrophoresis. This chapter covers analytical approaches based on LC and lectins used in low- and high-throughput N- and O-glycosylation analysis of Igs, with the focus on immunoglobulin G (IgG) applications. General principles and practical examples of the most often used LC methods for Ig purification are described, together with typical workflows for N- and O-glycan analysis on the level of free glycans, glycopeptides, subunits, or intact Igs. Lectin chromatography is a historical approach for the analysis of lectin-carbohydrate interactions and glycoprotein purification but is still being used as a valuable tool in Igs purification and glycan analysis. On the other hand, lectin microarrays have found their application in the rapid screening of glycan profiles on intact proteins.
Collapse
Affiliation(s)
- Tea Petrović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | |
Collapse
|
40
|
Han X, Lin H, Cao L, Chen X, Wang L, Zheng H, Zhang Z, Pavase TR, Wang S, Sun X, Sui J. Hapten-Branched Polyethylenimine as a New Antigen Affinity Ligand to Purify Antibodies with High Efficiency and Specificity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58191-58200. [PMID: 33319977 DOI: 10.1021/acsami.0c15586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purification of antibodies has become a critical factor in antibody production. A high-purity specific antibody against antigens, especially small molecules, seems to be difficult to obtain, even with the help of a protein A affinity column, which is a conventional and broadly used ligand for the separation of antibody and non-antibody proteins. Therefore, it is urgent to develop a cheap, simple, efficient, and stable method to separate the specific antibody from other antibodies. In this study, to improve the sensitivity and accuracy of immunoassay results, enrofloxacin (ENR) was grafted onto polyethylenimine (PEI) by the abundant amino groups and then the whole ligand (ENR-PEI) was conjugated to CNBr-Sepharose 4B to prepare the affinity column for the purification of the specific antibody against ENR from polyclonal antibodies. Scanning electron microscopy and Fourier transform infrared spectroscopy verification showed that Sepharose 4B was successfully modified by ENR-PEI with excellent uniformity. The capacity of the prepared column could reach to 6.15 mg of specific antibody with high purity per milliliter resin due to the high coupling ratio (49.3:1) of ENR on PEI, and the IC50 value of the antibody after purification was 47.58 ng/mL with a lowest limit of detection (IC10) of 1.099 ng/mL-18 times lower than those of the antibody purified through the protein A column. All the results showed that this new kind of resin could be used as the potential ligand in the purification of the trace-specific antibody against antigens in complex mixtures with high efficiency and specificity.
Collapse
Affiliation(s)
- Xiangning Han
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Rd, Jinan 250014, China
| | - Luefeng Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Hongwei Zheng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Ziang Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Rd, Qingdao 266100, China
| |
Collapse
|
41
|
Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 2020; 284:102254. [PMID: 32942182 DOI: 10.1016/j.cis.2020.102254] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Protein, as the material basis of vita, is the crucial undertaker of life activities, which constitutes the framework and main substance of human tissues and organs, and takes part in various forms of life activities in organisms. Separating proteins from biomaterials and studying their structures and functions are of great significance for understanding the law of life activities and clarifying the essence of life phenomena. Therefore, scientists have proposed the new concept of proteomics, in which protein separation technology plays a momentous role. It has been diffusely used in the food industry, agricultural biological research, drug development, disease mechanism, plant stress mechanism, and marine environment research. In this paper, combined with the recent research situation, the progress of protein separation technology was reviewed from the aspects of extraction, precipitation, membrane separation, chromatography, electrophoresis, molecular imprinting, microfluidic chip and so on.
Collapse
|
42
|
Padwal P, Finger C, Fraga-García P, Kaveh-Baghbaderani Y, Schwaminger SP, Berensmeier S. Seeking Innovative Affinity Approaches: A Performance Comparison between Magnetic Nanoparticle Agglomerates and Chromatography Resins for Antibody Recovery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39967-39978. [PMID: 32786242 DOI: 10.1021/acsami.0c05007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoclonal antibodies are key molecules in medicine and pharmaceuticals. A potentially crucial drawback for faster advances in research here is their high price due to the extremely expensive antibody purification process, particularly the affinity capture step. Affinity chromatography materials have to demonstrate the high binding capacity and recovery efficiency as well as superior chemical and mechanical stability. Low-cost materials and robust, faster processes would reduce costs and enhance industrial immunoglobulin purification. Therefore, exploring the use of alternative materials is necessary. In this context, we conduct the first comparison of the performance of magnetic nanoparticles with commercially available chromatography resins and magnetic microparticles with regard to immobilizing Protein G ligands and recovering immunoglobulin G (IgG). Simultaneously, we demonstrate the suitability of bare as well as silica-coated and epoxy-functionalized magnetite nanoparticles for this purpose. All materials applied have a similar specific surface area but differ in the nature of their matrix and surface accessibility. The nanoparticles are present as micrometer agglomerates in solution. The highest Protein G density can be observed on the nanoparticles. IgG adsorbs as a multilayer on all materials investigated. However, the recovery of IgG after washing indicates a remaining monolayer, which points to the specificity of the IgG binding to the immobilized Protein G. One important finding is the impact of the ligand-binding stoichiometry (Protein G surface coverage) on IgG recovery, reusability, and the ability to withstand long-term sanitization. Differences in the materials' performances are attributed to mass transfer limitations and steric hindrance. These results demonstrate that nanoparticles represent a promising material for the economical and efficient immobilization of proteins and the affinity purification of antibodies, promoting innovation in downstream processing.
Collapse
Affiliation(s)
- Priyanka Padwal
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Constanze Finger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Yasmin Kaveh-Baghbaderani
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
43
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
44
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
45
|
Mohsin AZ, Sukor R, Selamat J, Meor Hussin AS, Ismail IH, Jambari NN, Mustaffa-Kamal F. Generation of High Affinity Anti-Peptide Polyclonal Antibodies Recognizing Goat α s1-Casein. Molecules 2020; 25:E2622. [PMID: 32516919 PMCID: PMC7321099 DOI: 10.3390/molecules25112622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/02/2022] Open
Abstract
The chemical, technological and allergy properties of goat's milk are significantly affected by the level of αs1-casein. Detection and quantification of αs1-casein requires high-specificity methods to overcome high-sequence similarity between this protein and others in the casein family. Unavailability of antibodies with high affinity and specificity towards goat αs1-casein hinders the development of immuno-based analytical methods such as enzyme-linked immunosorbent assay (ELISA) and biosensors. Here, we report the generation of polyclonal antibodies (or immunoglobulins, IgGs) raised towards goat αs1-casein N- (Nter) and C-terminal (Cter) peptide sequences. The Nter and Cter peptides of goat αs1-casein were immunized in rabbits for the generation of antisera, which were purified using protein G affinity chromatography. The binding affinity of the antisera and purified IgGs were tested and compared using indirect ELISA, where peptide-BSA conjugates and goat αs1-casein were used as the coating antigens. The Nter antiserum displayed higher titer than Cter antiserum, at 1/64,000 and 1/32,000 dilutions, respectively. The purification step further yielded 0.5 mg/mL of purified IgGs from 3 mL of antisera. The purified Nter IgG showed a significantly (p < 0.05) higher binding affinity towards peptide-BSA and goat αs1-casein, with lower Kd value at 5.063 × 10-3 μM compared to 9.046 × 10-3 μM for the Cter IgG. A cross-reactivity test showed that there was no binding in neither Nter nor Cter IgGs towards protein extracts from the milk of cow, buffalo, horse and camel. High-quality antibodies generated will allow further development of immuno-based analytical methods and future in vitro studies to be conducted on goat αs1-casein.
Collapse
Affiliation(s)
- Aliah Zannierah Mohsin
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.Z.M.); (J.S.); (N.N.J.)
| | - Rashidah Sukor
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.Z.M.); (J.S.); (N.N.J.)
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jinap Selamat
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.Z.M.); (J.S.); (N.N.J.)
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | | | - Nuzul Noorahya Jambari
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.Z.M.); (J.S.); (N.N.J.)
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | |
Collapse
|
46
|
Pourrostam-Ravadanaq P, Safa KD, Abbasi H. Study of imidazole performance as pseudo-affinity ligand in the purification of IgG from bovine milk. Anal Biochem 2020; 597:113693. [PMID: 32201137 DOI: 10.1016/j.ab.2020.113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
The spherical sepharose CL-6B beads were activated by epichlorohydrin in different epoxy contents (80, 120 and 160 μmolepoxide/mLgel) and, l-histidine and imidazole as pseudo-affinity ligands were covalently immobilized to them. Some linkers with different length, (1,2-ethanediol diglycidyl ether and 1,4-butanediol diglycidyl ether) were synthesized for activation of sepharose and the activated sepharose beads modified with imidazole and the performance of these adsorbents in the purification of immunoglobulin G from bovine milk were evaluated. Among the l-histidine bearing adsorbents, higher adsorption of IgG (0.28 mg/mL) was obtained by adsorbent with the lower concentration of l-histidine. The highest amount of IgG adsorption (0.53 mg/mL) was obtained by imidazole bearing adsorbent with the highest amount of imidazole and Among the adsorbents with synthesized linkers, the adsorbent with 1,2-ethanediol diglycidyl ether showed better performance and was able to purify 0.25 mg/mL IgG with high purity. The synthesized pseudo-affinity adsorbents represented the abbility to purify immunoglobulin G in one-step process with high purity and efficiency.
Collapse
Affiliation(s)
| | - Kazem D Safa
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Hassan Abbasi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
47
|
Yang Z, Sun A, Zhao X, Song M, Wei J, Wang J, Zhao T, Xie Y, Chen Z, Tian Z, Liu H, Huang Z, Song X, Feng Z. Preparation and application of a beta-d-glucan microsphere conjugated protein A/G. Int J Biol Macromol 2020; 151:878-884. [DOI: 10.1016/j.ijbiomac.2020.02.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/29/2022]
|
48
|
Temporini C, Colombo R, Calleri E, Tengattini S, Rinaldi F, Massolini G. Chromatographic tools for plant-derived recombinant antibodies purification and characterization. J Pharm Biomed Anal 2020; 179:112920. [DOI: 10.1016/j.jpba.2019.112920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023]
|
49
|
Pássaro ACM, Mozetic TM, Schmitz JE, da Silva IJ, Martins TD, Bresolin ITL. Human Immunoglobulin G Adsorption in Epoxy Chitosan/Alginate Adsorbents: Evaluation of Isotherms by Artificial Neural Networks. CHEMICAL PRODUCT AND PROCESS MODELING 2019. [DOI: 10.1515/cppm-2019-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work aimed to evaluate the interaction of human IgG in non-conventional adsorbents based on chitosan and alginate in the absence and presence of Reactive Green, Reactive Blue and Cibacron Blue immobilized as ligands. The adsorption was evaluated at 277, 288, 298 and 310 K using sodium phosphate buffer, pH 7.6, at 25 mmol L−1. The highest adsorption capacity was observed in the experiments performed with no immobilized dye, although all showed adsorption capacity higher than 120 mg g−1. Data modeling was done using Langmuir, Langmuir-Freundlich and Temkin classical nonlinear models, and artificial neural networks (ANN) for comparison. According to the parameters obtained, a possible adsorption in multilayers was observed due to protein-adsorbent and protein-protein interactions, concluding that IgG adsorption process is favorable and spontaneous. Using an ANN structure with 3 hidden neurons (single hidden layer), the MSE (RMSE) for training, test and validation were 13.698 (3.701), 11.206 (3.347) and 7.632 (2.763), respectively, achieving correlation coefficients of 0.999 in all steps. ANN modeling proved to be effective in predicting the adsorption isotherms in addition to overcoming the difficulties caused by experimental errors and/or arising from adsorption phenomenology.
Collapse
|
50
|
Brämer C, Tünnermann L, Gonzalez Salcedo A, Reif OW, Solle D, Scheper T, Beutel S. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography. MEMBRANES 2019; 9:E159. [PMID: 31783640 PMCID: PMC6950724 DOI: 10.3390/membranes9120159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies are conquering the biopharmaceutical market because they can be used to treat a variety of diseases. Therefore, it is very important to establish robust and optimized processes for their production. In this article, the first step of chromatography (Protein A chromatography) in monoclonal antibody purification was optimized with a focus on the critical elution step. Therefore, different buffers (citrate, glycine, acetate) were tested for chromatographic performance and product quality. Membrane chromatography was evaluated because it promises high throughputs and short cycle times. The membrane adsorber Sartobind® Protein A 2 mL was used to accelerate the purification procedure and was further used to perform a continuous chromatographic run with a four-membrane adsorber-periodic counter-current chromatography (4MA-PCCC) system. It was found that citrate buffer at pH 3.5 and 0.15 M NaCl enabled the highest recovery of >95% and lowest total aggregate content of 0.26%. In the continuous process, the capacity utilization of the membrane adsorber was increased by 20%.
Collapse
Affiliation(s)
- Chantal Brämer
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Lisa Tünnermann
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Alina Gonzalez Salcedo
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Oscar-Werner Reif
- Sartorius Stedim Biotech, August-Spindler-Straße 11, 37079 Göttingen, Germany;
| | - Dörte Solle
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Thomas Scheper
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Sascha Beutel
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| |
Collapse
|