1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025:d4na00393d. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
4
|
Xing Y, Yang X, Yang R, Fatima Z, Xie P, Liu F, Cai T, Xu X, Zhou C, Jia Z, Zhai X, Piao X, Liu H, Hong SH, Zhang S, Ren X, Liu L, Li D. Simultaneous Isolation and Preparation of Extracellular Vesicles by Circular Multicavity Electrophoresis. Anal Chem 2025; 97:436-443. [PMID: 39757776 DOI: 10.1021/acs.analchem.4c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Extracellular vesicles (EVs) play a crucial role in diagnosis and treatment, yet obtaining highly purified EVs from complex biological samples is often hindered by nanoscale contaminants. In this work, considering the charge-to-size characteristics of EVs, a circular multicavity electrophoresis (CME) with gradient pore size distribution was constructed in the gradient electric field to realize the isolation and preparation of EVs. By the gradient gel sieving effect, small cell debris, EVs, and proteins in biological samples were gradually separated. The integration of ultrafiltration (UF) with CME synergistically enhances EV purification and preparation, resulting in a purity level 3.15 times higher than that achieved through ultracentrifugation (UC). The high yield preparation of EV was achieved through continuous injection facilitated by the application of a gradient electric field, where 3.55 × 1010 ± 6.32 × 108 particle numbers mL-1 of EVs were prepared from 36 mL of cell supernatant, and the recovery approached 87.65 ± 9.03%. Further evaluation of the cell uptake efficiency of EVs derived from umbilical cord mesenchymal stem cells prepared by CME-UF revealed that this approach effectively preserves both the integrity and bioactivity of the EVs. This work presents a novel approach for the isolation and preparation of EVs, offering valuable insights into future biological studies.
Collapse
Affiliation(s)
- Yuhang Xing
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
- Key Laboratory of Pathobiology, State Ethnic Affairs Commission, Yanbian University, Yanji 133000, China
| | - Xinlei Yang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Ruilin Yang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Zakia Fatima
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Peijie Xie
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Fei Liu
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
| | - Tianpei Cai
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xin Xu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Cailin Zhou
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
| | - Zeyang Jia
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
| | - Xueli Zhai
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
| | - Xiangfan Piao
- Department of Electronics, School of Engineering, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan 430204, China
| | - Sang Hee Hong
- South Sea Institute, Korea Institute of Ocean Science and Technology, 391 Jangmok-myon, Geoje-shi 656-834, Korea
| | - Songnan Zhang
- Yanbian Hospital, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangshan Ren
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
- Key Laboratory of Pathobiology, State Ethnic Affairs Commission, Yanbian University, Yanji 133000, China
| | - Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
- Key Laboratory of Agrifood Quality and Safety Evaluation, Jilin Province, Yanbian University, Yanji 133002, China
| | - Donghao Li
- Interdisciplinary, Molecular Biology of Biological Function, Changbai Mountain Key Laboratory of Natural Medicine of Ministry of Education, Yanbian University, Yanji 133000, China
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
- Key Laboratory of Agrifood Quality and Safety Evaluation, Jilin Province, Yanbian University, Yanji 133002, China
| |
Collapse
|
5
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
6
|
Di SJ, Cui XW, Liu TJ, Shi YY. Therapeutic potential of human breast milk-derived exosomes in necrotizing enterocolitis. Mol Med 2024; 30:243. [PMID: 39701931 DOI: 10.1186/s10020-024-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%. In recent years, exosomes, particularly those derived from breast milk, have emerged as potential candidates for NEC therapy. Human breast milk-derived exosomes (BME) have been shown to enhance intestinal barrier function, protect intestinal epithelial cells from oxidative stress, promote the proliferation and migration of intestinal epithelial cells, and reduce the severity of experimental NEC models. As a subset of extracellular vesicles, BME possess the membrane structure, low immunogenicity, and high permeability, making them ideal vehicles for the treatment of NEC. Additionally, exosomes derived from various sources, including stem cells, intestinal epithelial cells, plants, and bacteria, have been implicated in the development and protection of intestinal diseases. This article summarizes the mechanisms through which exosomes, particularly BME, exert their effects on NEC and discusses the feasibility and obstacles associated with this novel therapeutic strategy.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Wei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Liu Z, Pang B, Wang Y, Zheng J, Li Y, Jiang J. Advances of New Extracellular Vesicle Isolation and Detection Technologies in Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405872. [PMID: 39676429 DOI: 10.1002/smll.202405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Cancer is a global health issue threatening people's lives. Currently, cancer detection methods still have a lot of room for improvement in both efficiency and accuracy. The development and application of new technologies are urgently required for early cancer diagnosis and prognosis. Extracellular vesicles (EVs) are a type of phospholipid bilayer vesicle secreted by cells and play an important role in cancer development and metastasis. These small vesicles participate in cancer information transmission, antigen presentation, angiogenesis, immune response, tumor invasion, and mediate signaling pathways in the tumor microenvironment. Liquid biopsy of EV cargo contents is a fast-developing research area, holding promise for early cancer diagnosis and monitoring cancer progression in real-time. However, current EV detection technologies for clinical translation are still facing many challenges. Recent advancements in developing techniques for EV isolation and detection have made significant progress and are paving the way toward clinical application. Here, the advantages and limitations of traditional EV detection and isolation technologies in cancer diagnosis and prognosis are reviewed. The review also focuses on emerging EV detection and isolation technologies in cancer, discusses the challenges faced by current methods, and explores the perspective of new EV detection techniques for future cancer diagnosis.
Collapse
Affiliation(s)
- Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| | - Yuhui Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
8
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
9
|
Leung LL, Qu X, Chen B, Chan JYK. Extracellular vesicles in liquid biopsies: there is hope for oral squamous cell carcinoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:739-759. [PMID: 39811735 PMCID: PMC11725428 DOI: 10.20517/evcna.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Current approaches to oral cancer diagnosis primarily involve physical examination, tissue biopsy, and advanced computer-aided imaging techniques. However, despite these advances, patient survival rates have not significantly improved. Hence, there is a critical need to develop minimally invasive tools with high sensitivity and specificity to improve patient survival and quality of life. Liquid biopsy is a non-invasive, real-time method for predicting cancer status and potentially serves as a biomarker source for treatment response. Liquid biopsy includes rich biologically relevant components, such as circulating tumor cells, circulating tumor DNA, and extracellular vesicles (EVs). EVs are particularly intriguing due to their relatively high abundance in most biofluids, with the potential to identify specific cargo derived from circulating tumor EVs. Moreover, normal cells in lymph nodes can uptake EVs, fostering a pre-metastatic microenvironment that facilitates lymph node metastases - a common occurrence in oral cancers. This review encompasses English language publications over the last twenty years, focusing on methods for isolating EVs from saliva, blood, and lymphatic fluids, as well as the collection methods employed. Seventeen cases met the inclusion criteria according to ISEV guidelines, including 10 saliva cases, 6 blood cases, and 1 lymphatic fluid case. This review also highlighted research gaps in oral squamous cell carcinoma (OSCC) EVs, including a lack of multi-omics studies and the exploration of potential EV markers for drug resistance, as well as a notable underutilization of microfluidic technologies to translate liquid biopsy EV findings into clinical applications.
Collapse
Affiliation(s)
| | | | | | - Jason YK. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 00000, China
| |
Collapse
|
10
|
Lou Y, Yan J, Liu Q, Miao M, Shao Y. Biological functions and molecular mechanisms of exosome-derived circular RNAs and their clinical implications in digestive malignancies: the vintage in the bottle. Ann Med 2024; 56:2420861. [PMID: 39484707 PMCID: PMC11536637 DOI: 10.1080/07853890.2024.2420861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA). MATERIALS AND METHODS We searched recent studies and references to summary the research progress of exosomal circRNA. RESULTS Recent studies have revealed that exosome-derived circRNAs including exo-CDR1as, exo-circRanGAP1, exo-circIAR play vital roles in cell proliferation and apoptosis, epithelial mesenchymal transition, invasion and metastasis, angiogenesis, immune evasion, cellular crosstalk, cancer cachexia through a variety of biological mechanisms, such as serving as microRNA sponges, interacting with RNA binding proteins, regulating gene transcription, N6-Methyladenosine modification and so on. Due to their characteristics of origin, structure, properties and biological functions, exo-circRNAs are expected to apply in precious diagnosis and prognostic indicators, improving drug and radiation resistance and sensitivity, becoming biological therapeutic targets. CONCLUSION We summarize the update of digestive malignancies associated exo-circRNAs in biogenesis, biological functions, molecular mechanisms, clinical implications, potential applications and experimental technique in order to effectively promote transformation and application in the future.
Collapse
Affiliation(s)
- Yuanyan Lou
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qingqing Liu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Xi Y, Zhao Z, Wang F, Zhang D, Guo Y. IRTIDP: A simple integrated real-time isolation and detection platform for small extracellular vesicles Glypican-1 in pancreatic cancer patients. Talanta 2024; 280:126766. [PMID: 39191106 DOI: 10.1016/j.talanta.2024.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Glypican-1 (GPC-1) protein-positive small extracellular vesicles (GPC-1+-sEV) have been proposed as potential biomarkers for early diagnosis of pancreatic cancer. In this study, we present an integrated real-time isolation and detection platform (IRTIDP) to capture and analyze GPC-1+-sEV directly from sera of pancreatic cancer patients. First, CD63 antibody-modified metal-organic framework (MOF) materials were utilized to enrich sEVs with a capture efficiency of 93.93 %. Second, a SERS probe was constructed by Raman reporter 4-MBA and GPC-1 antibody modified SERS active silver nanoparticles (AgNPs), which formed a sandwich complex structure of "MOFs@GPC-1+-sEV@AgNPs-4-MBA" with MOFs-enriched sEVs. The IRTSDP can complete the capture and detection process within 35 min, with a detection limit for 1 GPC-1+-sEV/μL, and linear range between 105∼109 GPC-1+-sEV/mL. Furthermore, this approach has been applied to quantify serum sEV GPC-1 in clinical pancreatic cancer patients. Based on the SERS intensity analysis, pancreatic cancer patients can be distinguished from pancreatic cystadenoma patients and healthy individuals effectively using this innovative platform that provides highly specific and sensitive means for early diagnosis of pancreatic cancer as well as other tumor types.
Collapse
Affiliation(s)
- Yuge Xi
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China; Department of Laboratory Medicine, The People's Hospital of Chongging Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zijun Zhao
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Dan Zhang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
12
|
Miceli RT, Chen T, Nose Y, Tichkule S, Brown B, Fullard JF, Saulsbury MD, Heyliger SO, Gnjatic S, Kyprianou N, Cordon‐Cardo C, Sahoo S, Taioli E, Roussos P, Stolovitzky G, Gonzalez‐Kozlova E, Dogra N. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J Extracell Vesicles 2024; 13:e70005. [PMID: 39625409 PMCID: PMC11613500 DOI: 10.1002/jev2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses. Consequently, there is a gap in knowledge and the need for a standardized approach in delineating EV-RNAs. Here, we address these gaps by describing the following points by (1) focusing on the large canopy of the EVs and particles (EVPs), which includes, but not limited to - exosomes and other large and small EVs, lipoproteins, exomeres/supermeres, mitochondrial-derived vesicles, RNA binding proteins, and cell-free DNA/RNA/proteins; (2) examining the potential functional roles and biogenesis of EVPs; (3) discussing various transcriptomic methods and technologies used in uncovering the cargoes of EVPs; (4) presenting a comprehensive list of RNA subtypes reported in EVPs; (5) describing different EV-RNA databases and resources specific to EV-RNA species; (6) reviewing established bioinformatics pipelines and novel strategies for reproducible EV transcriptomics analyses; (7) emphasizing the significant need for a gold standard approach in identifying EV-RNAs across studies; (8) and finally, we highlight current challenges, discuss possible solutions, and present recommendations for robust and reproducible analyses of EVP-associated small RNAs. Overall, we seek to provide clarity on the transcriptomics landscape, sequencing technologies, and bioinformatic analyses of EVP-RNAs. Detailed portrayal of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. For the inclusion of different particles discussed in this article, we use the terms large/small EVs, non-vesicular extracellular particles (NVEPs), EPs and EVPs as defined in MISEV guidelines by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Rebecca T. Miceli
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tzu‐Yi Chen
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yohei Nose
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapnil Tichkule
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Briana Brown
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Fullard
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marilyn D. Saulsbury
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Simon O. Heyliger
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Sacha Gnjatic
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carlos Cordon‐Cardo
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susmita Sahoo
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emanuela Taioli
- Department of Population Health and ScienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Thoracic SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Panos Roussos
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Precision Medicine and Translational TherapeuticsJames J. Peters VA Medicinal CenterBronxNew YorkUSA
- Mental Illness Research Education and Clinical Center (MIRECC)James J. Peters VA Medicinal CenterBronxNew YorkUSA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Biomedical Data Sciences Hub (Bio‐DaSH), Department of Pathology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Edgar Gonzalez‐Kozlova
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Navneet Dogra
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Genomics Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- AI and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
13
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
14
|
Hwang HS, Lee CS. Exosome-Integrated Hydrogels for Bone Tissue Engineering. Gels 2024; 10:762. [PMID: 39727520 DOI: 10.3390/gels10120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Exosome-integrated hydrogels represent a promising frontier in bone tissue engineering, leveraging the unique biological properties of exosomes to enhance the regenerative capabilities of hydrogels. Exosomes, as naturally occurring extracellular vesicles, carry a diverse array of bioactive molecules that play critical roles in intercellular communication and tissue regeneration. When combined with hydrogels, these exosomes can be spatiotemporally delivered to target sites, offering a controlled and sustained release of therapeutic agents. This review aims to provide a comprehensive overview of the recent advancements in the development, engineering, and application of exosome-integrated hydrogels for bone tissue engineering, highlighting their potential to overcome current challenges in tissue regeneration. Furthermore, the review explores the mechanistic pathways by which exosomes embedded within hydrogels facilitate bone repair, encompassing the regulation of inflammatory pathways, enhancement of angiogenic processes, and induction of osteogenic differentiation. Finally, the review addresses the existing challenges, such as scalability, reproducibility, and regulatory considerations, while also suggesting future directions for research in this rapidly evolving field. Thus, we hope this review contributes to advancing the development of next-generation biomaterials that synergistically integrate exosome and hydrogel technologies, thereby enhancing the efficacy of bone tissue regeneration.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
15
|
Cheng T, Mao M, Liu Y, Xie L, Shi F, Liu H, Li X. The potential therapeutic effect of human umbilical cord mesenchymal stem cell-derived exosomes in bronchopulmonary dysplasia. Life Sci 2024; 357:123047. [PMID: 39260518 DOI: 10.1016/j.lfs.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, with its incidence rising due to improved survival rates of these infants. BPD results from a combination of prenatal and postnatal factors, such as mechanical ventilation, oxygen toxicity, and infections, all of which significantly impact the prognosis and growth of affected infants. Current treatment options for BPD are largely supportive and do not address the underlying pathology. Exosomes are cell-derived bilayer-enclosed membrane structures enclosing proteins, lipids, RNAs, growth factors, cytokines and metabolites. They have become recognized as crucial regulators of intercellular communication in various physiological and pathological processes. Previous studies have revealed the therapeutic potential of human umbilical cord mesenchymal stem cells-derived exosomes (HUCMSCs-Exos) in promoting tissue repair and regeneration. Therefore, HUCMSCs-Exos maybe a promising and effective therapeutic modality for BPD. In this review, we firstly provide a comprehensive overview of BPD, including its etiology and the mechanisms of lung injury. Then we detail the isolation, characterization, and contents of HUCMSCs-Exos, and discuss their potential mechanisms of HUCMSCs-Exos in BPD treatment. Additionally, we summarize current clinical trials and discuss the challenges in translating these findings from bench to bedside. This review aims to lay the groundwork for future clinical applications of HUCMSCs-Exos in treating BPD.
Collapse
Affiliation(s)
- Tianyu Cheng
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Opadokun T, Rohrbach P. A Reproducible Protocol for the Isolation of Malaria-Derived Extracellular Vesicles by Differential Centrifugation. Methods Protoc 2024; 7:92. [PMID: 39584985 PMCID: PMC11587005 DOI: 10.3390/mps7060092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Over the last few decades, malaria-derived extracellular vesicles (EVs) have gained increasing interest due to their role in disease pathophysiology and parasite biology. Unlike other EV research fields, the isolation of malaria EVs is not standardized, hampering inter-study comparisons. Most malaria EV studies isolate vesicles by the "gold-standard" technique of differential (ultra)centrifugation (DC). Here, we describe in detail an optimized and reproducible protocol for the isolation of malaria-derived EVs by DC. The protocol begins with a description of cultivating high-parasitemia, synchronous P. falciparum cultures that are the source of EV-containing conditioned culture media. The isolation protocol generates two EV subtypes, and we provide details of characterizing these distinct subtypes by analyzing human and parasite proteins by Western blot analysis. We identify some of these proteins as suitable markers for malaria EV subpopulations and subtypes.
Collapse
Affiliation(s)
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
17
|
Popova AK, Vashukova ES, Illarionov RA, Maltseva AR, Pachuliia OV, Postnikova TB, Glotov AS. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int J Mol Sci 2024; 25:11944. [PMID: 39596014 PMCID: PMC11594130 DOI: 10.3390/ijms252211944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) are double-membrane vesicles that facilitate intercellular communication and play a pivotal role in both physiological and pathological processes. A substantial body of evidence suggests that EVs play a role in the pathogenesis of various pregnancy complications. Because EVs can be detected in the peripheral blood, they are potential biomarkers for the early diagnosis of pregnancy complications and foetal developmental disorders. The majority of studies have demonstrated a correlation between alterations in the concentration of EVs and changes in their contents and the occurrence of pregnancy complications. Despite the current limitations in establishing a clear link between these findings and the pathogenesis of the disease, as well as the lack of sufficient evidence to support their use in clinical practice, it is noteworthy to highlight the potential role of specific miRNAs carried by EVs in the development of pregnancy complications. These include miR-210 and miR-136-5p for pre-eclampsia and gestational diabetes mellitus, miR-155, miR-26b-5p, miR-181a-5p, miR-495 and miR-374c for pre-eclampsia and preterm birth. The following miRNAs have been identified as potential biomarkers for preterm birth and gestational diabetes mellitus: miR-197-3p and miR-520h, miR-1323, miR-342-3p, miR-132-3p, miR-182-3p, miR-517-3p, miR-222-3p, miR-16-5p and miR-126-3p. Additionally, miR-127-3p has been linked to foetal growth restriction and preterm birth. Nevertheless, it would be premature to propose that EVs can be employed as biomarkers for pregnancy complications. Further research and the accumulation of results obtained using the methods proposed in the MISEV2023 guidelines will enable a definitive conclusion to be reached.
Collapse
Affiliation(s)
- Anastasiia K. Popova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatiana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
18
|
Verwilt J, Vromman M. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1872. [PMID: 39506237 DOI: 10.1002/wrna.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Circular RNAs (circRNAs) are closed RNA loops present in humans and other organisms. Various circRNAs have an essential role in diseases, including cancer. Cells can release circRNAs into the extracellular space of adjacent biofluids and can be present in extracellular vesicles. Due to their circular nature, extracellular circRNAs (excircRNAs) are more stable than their linear counterparts and are abundant in many biofluids, such as blood plasma and urine. circRNAs' link with disease suggests their extracellular counterparts have high biomarker potential. However, circRNAs and the extracellular space are challenging research domains, as they consist of complex biological systems plagued with nomenclature issues and a wide variety of protocols with different advantages and disadvantages. Here, we summarize what is known about excircRNAs, the current challenges in the field, and what is needed to improve extracellular circRNA research.
Collapse
Affiliation(s)
- Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Marieke Vromman
- CNRS UMR3244 (Dynamics of Genetic Information), Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| |
Collapse
|
19
|
Wa Q, Luo Y, Tang Y, Song J, Zhang P, Linghu X, Lin S, Li G, Wang Y, Wen Z, Huang S, Xu W. Mesoporous bioactive glass-enhanced MSC-derived exosomes promote bone regeneration and immunomodulation in vitro and in vivo. J Orthop Translat 2024; 49:264-282. [PMID: 39524151 PMCID: PMC11550139 DOI: 10.1016/j.jot.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Exosomes produced by mesenchymal stem cells (MSCs) have vascular generative properties and are considered new effective candidates for the treatment of bone defects as alternatives to cell therapy. Improving the pro-regenerative function and efficacy of exosomes has been a popular research topic in the field of orthopaedics. Methods We prepared mesoporous bioactive glass (mBG) microspheres via the template method. The ionic products of mBGs used to treat MSCs were extracted, and the effects of exosomes secreted by MSCs on osteoblast (OB) and macrophage (MP) behaviour and bone defect repair were observed in vivo (Micro-CT, H&E, Masson, and immunofluorescence staining for BMP2, COL1, VEGF, CD31, CD163, and iNOS). Results The mBG spheres were successfully prepared, and the Exo-mBG were isolated and extracted. Compared with those in the blank and Exo-Con groups, the proliferation and osteogenic differentiation of OBs in the Exo-mBG group were significantly greater. For example, on Day 7, OPN gene expression in the Ctrl-Exo group was 3.97 and 2.83 times greater than that in the blank and Exo-mBG groups, respectively. In a cranial defect rat model, Exo-mBG promoted bone tissue healing and angiogenesis, increased M2 macrophage polarisation and inhibited M1 macrophage polarisation, as verified by micro-CT, H&E staining, Masson staining and immunofluorescence staining. These effects may be due to the combination of a higher silicon concentration and a higher calcium-to-phosphorus ratio in the mBG ionic products. Conclusion This study provides insights for the application of exosomes in cell-free therapy and a new scientific basis and technical approach for the utilisation of MSC-derived exosomes in bone defect repair. The translational potential of this article Our study demonstrated that exosomes produced by mBG-stimulated MSCs have excellent in vitro and in vivo bone-enabling and immunomodulatory functions and provides insights into the use of exosomes in clinical cell-free therapies.
Collapse
Affiliation(s)
- Qingde Wa
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, Guizhou, 563000, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No.10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Yongxiang Luo
- Marshall Biomedical Engineering Laboratory, Shenzhen University, No. 3688 Nanhai Avenue, Nanshan District, Shenzhen, Guangdong, 518060, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Jiaxiang Song
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, Guizhou, 563000, China
| | - Penghui Zhang
- Department of Orthopaedics, Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xitao Linghu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, Guizhou, 563000, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yixiao Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China, No. 98 Fenghuang North Road, Huichuan District, Zunyi City, Guizhou, 563002, China
| | - Zhenyu Wen
- Zunyi Medical University, No. 1 Campus, Xinpu New District, Zunyi City, Guizhou, 563000, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, Guangdong, 510260, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No.10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong, 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong, 510500, China
- Guangdong Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology Research Center, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong, 510316, China
| |
Collapse
|
20
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Long C, Shi H, Li J, Chen L, Lv M, Tai W, Wang H, Xu Y. The diagnostic accuracy of urine-derived exosomes for bladder cancer: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:285. [PMID: 39472962 PMCID: PMC11520875 DOI: 10.1186/s12957-024-03569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Urine-derived exosomes could potentially be biomarkers for bladder cancer (BC) diagnosis. This study aimed to systematically evaluate the diagnostic worth of urine-derived exosomes in BC patients through a meta-analysis of diverse studies. METHODS A systematic search was carried out in PubMed, Web of Science, Embase, Cochrane, and CNKI databases to obtain the literature concerning the diagnosis of BC via urine-derived exosomes. A literature retrieval strategy was devised to pick articles and extract needed data from the literature. QUADS-2 was used to evaluate the quality of the included literatures, and the aggregated diagnostic effect was assessed by calculating the area under the aggregated SROC curve. All statistical analyses and plots were conducted with STATA 14.0 and RevMan5.3. RESULTS A total of 678 articles were retrieved by means of the search strategy of the online database. Through screening, 21 articles were obtained, involving 3348 participants and 77 studies. The meta-analysis of the results indicated that urinary exosomes had a combined sensitivity of 0.75, a specificity of 0.77, and a combined AUC of 0.83 for the diagnosis of BC, suggesting that urine-derived exosomes have a relatively satisfactory diagnostic effect in the detection of BC. Among the subgroups classified by biomarker, long non-coding RNAs (lncRNAs) had the highest comprehensive sensitivity (SEN = 0.78), and miRNAs had the highest comprehensive specificity (SPN = 0.81). In other subgroup analyses, the biomarker panel for multiple exosomes combined diagnosis demonstrated the best diagnostic efficacy, with a combined the area under the curve ( AUC) of 0.87. CONCLUSIONS As a novel biomarker, urine-derived exosomes have significant diagnostic prospects in the diagnosis of BC. Nevertheless, their application in clinical settings still demands a considerable number of clinical trials to confirm their clinical feasibility and practicability.
Collapse
Affiliation(s)
- Chunyue Long
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Jinyu Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Lijian Chen
- Department of Clinical Laboratory, Fuqing People's Hospital, Fuqing , Fujian, 350300, China
| | - Mei Lv
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Wenlin Tai
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China.
| | - Yiheng Xu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China.
| |
Collapse
|
22
|
Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S, Thalla M, Jain A, Palakurthi S. A comprehensive review of challenges and advances in exosome-based drug delivery systems. NANOSCALE ADVANCES 2024:d4na00501e. [PMID: 39484149 PMCID: PMC11523810 DOI: 10.1039/d4na00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Exosomes or so-called natural nanoparticles have recently shown enormous potential for targeted drug delivery systems. Several studies have reported that exosomes as advanced drug delivery platforms offer efficient targeting of chemotherapeutics compared to individual polymeric nanoparticles or liposomes. Taking structural constituents of exosomes, viz., proteins, nucleic acids, and lipids, into consideration, exosomes are the most promising carriers as genetic messengers and for treating genetic deficiencies or tumor progression. Unfortunately, very little attention has been paid to the factors like source, scalability, stability, and validation that contribute to the quality attributes of exosome-based drug products. Some studies suggested that exosomes were stable at around -80 °C, which is impractical for storing pharmaceutical products. Currently, no reports on the shelf-life and in vivo stability of exosome formulations are available. Exosomes are quickly cleared from blood circulation, and their in vivo distribution depends on the source. Considering these challenges, further studies are necessary to address major limitations such as poor drug loading, reduced in vivo stability, a need for robust, economical, and scalable production methods, etc., which may unlock the potential of exosomes in clinical applications. A few reports based on hybrid exosomes involving hybridization between different cell/tumor/macrophage-derived exosomes with synthetic liposomes through membrane fusion have shown to overcome some limitations associated with natural or synthetic exosomes. Yet, sufficient evidence is indispensable to prove their stability and clinical efficacy.
Collapse
Affiliation(s)
- Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Brijesh Shah
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Susan Immanuel
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| |
Collapse
|
23
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Dubrovsky G, Ross A, Jalali P, Lotze M. Liquid Biopsy in Pancreatic Ductal Adenocarcinoma: A Review of Methods and Applications. Int J Mol Sci 2024; 25:11013. [PMID: 39456796 PMCID: PMC11507494 DOI: 10.3390/ijms252011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a malignancy with one of the highest mortality rates. One limitation in the diagnosis and treatment of PDAC is the lack of an early and universal biomarker. Extensive research performed recently to develop new assays which could fit this role is available. In this review, we will discuss the current landscape of liquid biopsy in patients with PDAC. Specifically, we will review the various methods of liquid biopsy, focusing on circulating tumor DNA (ctDNA) and exosomes and future opportunities for improvement using artificial intelligence or machine learning to analyze results from a multi-omic approach. We will also consider applications which have been evaluated, including the utility of liquid biopsy for screening and staging patients at diagnosis as well as before and after surgery. We will also examine the potential for liquid biopsy to monitor patient treatment response in the setting of clinical trial development.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
- Pittsburgh VA Medical Center, Pittsburgh, PA 15240, USA
| | - Alison Ross
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Michael Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Kim G, Seo M, Xu J, Park J, Gim S, Chun H. Large-Area Silicon Nitride Nanosieve for Enhanced Diffusion-Based Exosome Isolation. SMALL METHODS 2024; 8:e2301624. [PMID: 38801014 DOI: 10.1002/smtd.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Nanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency. There have been many attempts to fabricate sub-micrometer thin membranes, but the limited surface area has restricted their practicality. In this study, large-area silicon nitride nanosieves for enhanced diffusion-based isolation of exosomes are presented. Notably, these nanosieves are scaled to sizes of up to 4-inch-wafers, a significant achievement in overcoming the fabrication challenges associated with such expansive areas. The method employs a 200 nm porous sieve (38.2% porosity) for exosome separation and a 50 nm sieve (10.7% porosity) for soluble protein removal. These 300 nm thick nanosieves outperform conventional polycarbonate membranes by being 50 times thinner, thereby increasing nanoparticle permeability. The method enables a 90% recovery rate of intact exosomes from human serum and a purity ratio of 3 × 107 particles/µg protein, 4.6 times higher than ultracentrifugation methods. The throughput of the method is up to 15 mL by increasing the size of the nanosieve, making it an ideal solution for large-scale exosome production for therapeutic purposes.
Collapse
Affiliation(s)
- Gijung Kim
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Mingyu Seo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jiaxin Xu
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jinhyeok Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Sangjun Gim
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Bonacquisti EE, Ferguson SW, Wadsworth GM, Jasiewicz NE, Wang J, Chaudhari AP, Kussatz CC, Nogueira AT, Keeley DP, Itano MS, Bolton ML, Hahn KM, Banerjee PR, Nguyen J. Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles. J Control Release 2024; 374:349-368. [PMID: 39111600 PMCID: PMC11550487 DOI: 10.1016/j.jconrel.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
Extracellular vesicles (EVs), or exosomes, play important roles in physiological and pathological cellular communication and have gained substantial traction as biological drug carriers. EVs contain both short and long non-coding RNAs that regulate gene expression and epigenetic processes. To fully capitalize on the potential of EVs as drug carriers, it is important to study and understand the intricacies of EV function and EV RNA-based communication. Here we developed a genetically encodable RNA-based biomaterial, termed EXO-Probe, for tracking EV RNAs. The EXO-Probe comprises an EV-loading RNA sequence (EXO-Code), fused to a fluorogenic RNA Mango aptamer for RNA imaging. This fusion construct allowed the visualization and tracking of EV RNA and colocalization with markers of multivesicular bodies; imaging RNA within EVs, and non-destructive quantification of EVs. Overall, the new RNA-based biomaterial provides a useful and versatile means to interrogate the role of EVs in cellular communication via RNA trafficking to EVs and to study cellular sorting decisions. The system will also help lay the foundation to further improve the therapeutic efficacy of EVs as drug carriers.
Collapse
Affiliation(s)
- Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott W Ferguson
- Department of Pharmaceutical Sciences, University at Buffalo, USA
| | - Gable M Wadsworth
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinli Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ameya P Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel P Keeley
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA
| | - Michelle S Itano
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew L Bolton
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, 22903, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, Andaloussi SE, Borén J, Wiseman J, Bohlooly-Y M, Lindfors L, Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol Aspects Med 2024; 99:101302. [PMID: 39094449 DOI: 10.1016/j.mam.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.
Collapse
Affiliation(s)
- Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Benyapa Tangruksa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Global Patient Safety - Biopharma, AstraZeneca, 431 83, Gothenburg, Mölndal, Sweden
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden.
| |
Collapse
|
28
|
Hu T, Duan R, Gao H, Bai X, Huang X, Yan X, An L, Ma Y, Chen R, Hong S, Gan M. Exosomes from myoblasts induced by hypoxic preconditioning improved ventricular conduction by increasing Cx43 expression in hypothermia ischemia reperfusion hearts. Cytotechnology 2024; 76:533-546. [PMID: 39188650 PMCID: PMC11344748 DOI: 10.1007/s10616-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Myocardial ischemia-reperfusion arrhythmia after cardiac surgery is common and seriously affects quality of life. Remote ischemic preconditioning can reduce the myocardial damage caused by severe ischemia. However, the underlying mechanism is not well understood. This study aimed to investigate the effects of exosomes derived from C2C12 mouse myoblasts after hypoxic preconditioning (HP) on ventricular conduction in hypothermic ischemia-reperfusion hearts. Myocardial ischemia-reperfusion model rats were established using the Langendorff cardiac perfusion system. Exosomes derived from normoxic (ExoA) and hypoxia-preconditioned (ExoB) C2C12 cells were injected into the jugular vein of the model rats. The time to heartbeat restoration, arrhythmia type and duration, and heart rate were recorded after myocardial ischemia-reperfusion. Conduction velocity on the surface of left ventricle was measured using a microelectrode array after 30 min of balanced perfusion, 15 min of reperfusion, and 30 min of reperfusion. Immunohistochemistry and western blotting were performed to determine the distribution and relative expression of connexin 43 (Cx43). ExoB contained more exosomes than ExoA, showing that HP stimulated the release of exosomes. The IR + ExoB group showed faster recovery of ventricular myocardial activity, a lower arrhythmia score, faster conduction velocity, and better electrical conductivity than the IR group. ExoB increased the expression of Cx43 and reduced its lateralization in the ventricular muscle. Our study showed that exosomes induced by hypoxic preconditioning can improve ventricular myocardial conduction and reperfusion arrhythmia in isolated hearts after hypothermic ischemia-reperfusion. Graphical abstract
Collapse
Affiliation(s)
- Tingju Hu
- Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Rui Duan
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Hong Gao
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004 Guizhou China
| | - Xue Bai
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xiang Huang
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xu Yan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Li An
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Yanyan Ma
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Rui Chen
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Sen Hong
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Mi Gan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| |
Collapse
|
29
|
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int J Mol Sci 2024; 25:10401. [PMID: 39408730 PMCID: PMC11476574 DOI: 10.3390/ijms251910401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery. However, achieving a sufficient accumulation of therapeutic agents at the target site necessitates a larger quantity of EVs per dose compared to using EVs as standalone drugs. This challenge can be addressed by administering larger doses of EVs, increasing the drug dosage per administration, or enhancing the selective accumulation of EVs at target cells. In this review, we will discuss methods to improve the isolation and purification of EVs, approaches to enhance cargo packaging-including proteins, RNAs, and small-molecule drugs-and technologies for displaying targeting ligands on the surface of EVs to facilitate improved targeting. Ultimately, this guide can be applied to the development of novel classes of EV-based therapeutics and to overcoming existing technological challenges.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
30
|
Nieszporek A, Wierzbicka M, Labedz N, Zajac W, Cybinska J, Gazinska P. Role of Exosomes in Salivary Gland Tumors and Technological Advances in Their Assessment. Cancers (Basel) 2024; 16:3298. [PMID: 39409917 PMCID: PMC11475412 DOI: 10.3390/cancers16193298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Backgroud: Salivary gland tumors (SGTs) are rare and diverse neoplasms, presenting significant challenges in diagnosis and management due to their rarity and complexity. Exosomes, lipid bilayer vesicles secreted by almost all cell types and present in all body fluids, have emerged as crucial intercellular communication agents. They play multifaceted roles in tumor biology, including modulating the tumor microenvironment, promoting metastasis, and influencing immune responses. Results: This review focuses on the role of exosomes in SGT, hypothesizing that novel diagnostic and therapeutic approaches can be developed by exploring the mechanisms through which exosomes influence tumor occurrence and progression. By understanding these mechanisms, we can leverage exosomes as diagnostic and prognostic biomarkers, and target them for therapeutic interventions. The exploration of exosome-mediated pathways contributing to tumor progression and metastasis could lead to more effective treatments, transforming the management of SGT and improving patient outcomes. Ongoing research aims to elucidate the specific cargo and signaling pathways involved in exosome-mediated tumorigenesis and to develop standardized techniques for exosome-based liquid biopsies in clinical settings. Conclusions: Exosome-based liquid biopsies have shown promise as non-invasive, real-time systemic profiling tools for tumor diagnostics and prognosis, offering significant potential for enhancing patient care through precision and personalized medicine. Methods like fluorescence, electrochemical, colorimetric, and surface plasmon resonance (SPR) biosensors, combined with artificial intelligence, improve exosome analysis, providing rapid, precise, and clinically valid cancer diagnostics for difficult-to-diagnose cancers.
Collapse
Affiliation(s)
- Artur Nieszporek
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Małgorzata Wierzbicka
- Institute of Human Genetics Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
- Department of Otolaryngology, Regional Specialist Hospital Wroclaw, Research & Development Centre, Kamienskiego Street 73a, 51-124 Wroclaw, Poland
| | - Natalia Labedz
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Weronika Zajac
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Joanna Cybinska
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Patrycja Gazinska
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| |
Collapse
|
31
|
Feast S, Titterington J, Hoang VA, Allison TM, Fee C, Nazmi AR. Purification of his-tagged proteins using printed monolith adsorption columns. J Chromatogr A 2024; 1733:465216. [PMID: 39154493 DOI: 10.1016/j.chroma.2024.465216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Bio-separation is a crucial process in biotechnology and biochemical engineering for separating biological macromolecules, and the field has long relied on bead-based and expanded bed chromatography. Printed monolith adsorption (PMA) is a new alternative to which uses a 3D-printed monolithic structure containing self-supporting, ordered flow channels. PMA allows for direct purification of biological molecules from crude cell lysates and cell cultures, and like the other technologies, can functionalized to specifically target a molecule and enable affinity chromatography. Here we have combined PMA technology with an immobilized metal affinity ligand (iminodiacetic acid) to provide selectivity of binding to polyhistidine-tagged proteins during PMA chromatography. Two different PMA structures were created and tested for both static and dynamic protein-binding capacity. At comparative linear flow rates, the dynamic binding capacity of both columns was ≈3 mg/mL, while static capacity was shown to differentiate based on column voidage. We show that a polyhistidine-tagged protein can be directly purified from crude lysate with comparable results to the available commercial providers of IMAC, and with a substantially reduced purification time.
Collapse
Affiliation(s)
- Sean Feast
- Precision Chromatography Limited, Private Bag 4800, Christchurch 8020, New Zealand
| | - James Titterington
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Viet-Anh Hoang
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Timothy M Allison
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Conan Fee
- School of Product Design, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Ali Reza Nazmi
- School of Product Design, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| |
Collapse
|
32
|
Bhavsar V, Sahu A, Taware R. Stress-induced extracellular vesicles: insight into their altered proteomic composition and probable physiological role in cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05121-x. [PMID: 39302488 DOI: 10.1007/s11010-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
EVs (extracellular vesicles) are phospholipid bilayer vesicles that can be released by both prokaryotic and eukaryotic cells in normal as well as altered physiological conditions. These vesicles also termed as signalosomes, possess a distinctive cargo comprising nucleic acids, proteins, lipids, and metabolites, enabling them to play a pivotal role in both local and long-distance intercellular communication. The composition, origin, and release of EVs can be influenced by different physiological conditions and a variety of stress factors, consequently affecting the contents carried within these vesicles. Therefore, identifying the modified contents of EVs can provide valuable insights into their functional role in stress-triggered communication. Particularly, this is important when EVs released from tumor microenvironment are investigated for their role in the development and dissemination of cancer. This review article emphasizes the importance of differential EV shedding and altered proteomic content in response to reduced oxygen concentration, altered levels of glucose and glutamine, pH variations, oxidative stress and Ca2+ ion concertation and it is subsequent effects on the behavior of recipient cells.
Collapse
Affiliation(s)
- Vaidehi Bhavsar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ashish Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ravindra Taware
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
33
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00990-2. [PMID: 39298081 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
34
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
35
|
Hu Z, Qian S, Zhao Q, Lu B, Lu Q, Wang Y, Zhang L, Mao X, Wang D, Cui W, Sun X. Engineering strategies for apoptotic bodies. SMART MEDICINE 2024; 3:e20240005. [PMID: 39420952 PMCID: PMC11425054 DOI: 10.1002/smmd.20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles containing proteins, lipids, nucleic acids, and metabolites secreted by cells under various physiological and pathological conditions that mediate intercellular communication. The main types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are vesicles released during the terminal stages of cellular apoptosis, enriched with diverse biological entities and characterized by distinct morphological features. As a result, ABs possess great potential in fields like disease diagnosis, immunotherapy, regenerative therapy, and drug delivery due to their specificity, targeting capacity, and biocompatibility. However, their therapeutic efficacy is notably heterogeneous, and an overdose can lead to side effects such as accumulation in the liver, spleen, lungs, and gastrointestinal system. Through bioengineering, the properties of ABs can be optimized to enhance drug-loading efficiency, targeting precision, and multifunctionality for clinical implementations. This review focuses on strategies such as transfection, sonication, electroporation, surface engineering, and integration with biomaterials to enable ABs to load cargoes and enhance targeting, providing insights into the engineering of ABs.
Collapse
Affiliation(s)
- Zheyuan Hu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhuan Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danru Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
36
|
Rocha DAS, Santos LE, Da Fonseca PB, De Felice FG. Prospects and challenges in using neuronal extracellular vesicles in biomarker research. Alzheimers Dement 2024; 20:6632-6638. [PMID: 39009473 PMCID: PMC11497720 DOI: 10.1002/alz.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Extracellular vesicles (EVs) hold promise as a source of disease biomarkers. The diverse molecular cargo of EVs can potentially indicate the status of their tissue of origin, even against the complex background of whole plasma. The main tools currently available for assessing biomarkers of brain health include brain imaging and analysis of the cerebrospinal fluid of patients. Given the costs and difficulties associated with these methods, isolation of EVs of neuronal origin (NEVs) from the blood is an attractive approach to identify brain-specific biomarkers. This perspective describes current key challenges in EV- and NEV-based biomarker research. These include the relative low abundance of EVs, the lack of validated isolation methods, and the difficult search for an adequate target for immunocapturing NEVs. We discuss that these challenges must be addressed before NEVs can fulfill their potential for biomarker research. HIGHLIGHTS: NEVs are promising sources of biomarkers for brain disorders. Immunocapturing NEVs from complex biofluids presents several challenges. The choice of surface target for capture will determine NEV yield. Contamination by non-EV sources is relevant for biomarkers at low concentrations.
Collapse
Affiliation(s)
| | - Luis E. Santos
- D'Or Institute for Research and EducationRio de JaneiroBrazil
| | - Pedro B. Da Fonseca
- D'Or Institute for Research and EducationRio de JaneiroBrazil
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Fernanda G. De Felice
- D'Or Institute for Research and EducationRio de JaneiroBrazil
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroBrazil
- Centre for Neuroscience StudiesDepartment of Biomedical and Molecular Sciences and Department of PsychiatryQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
37
|
Han Y, Ye M, Ye S, Liu B. Comparison of Lung Tissue-Derived Extracellular Vesicles Using Multiple Dissociation Methods for Profiling Protein Biomarkers. Biotechnol J 2024; 19:e202400329. [PMID: 39295555 DOI: 10.1002/biot.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Extracellular vesicles (EVs) operate as chemical messengers that facilitate intercellular communication. Emerging evidence has demonstrated that lung tissue-derived EVs play pivotal roles in pulmonary physiological processes and have potential as biomarkers and therapeutics for lung diseases. Multiple methods have been proposed for the isolation of lung tissue-derived EVs. However, the effects of different tissue pre-treatments on lung EV isolation and subsequent disease biomarker discovery have not yet been comprehensively investigated. In this study, we compared the physical characteristics, recovery yields, and protein compositions of EVs isolated from lung tissues using three methods based on different tissue dissociation principles. Methodologically, the beneficial roles of blood perfusion and gentle meshing were emphasized based on their impact on EV yield and purity. These results demonstrate that different methods enrich distinct subpopulations of EVs that exhibit significant differences in their protein cargo and surface properties. These disparities directly affect the diagnostic detection of marker proteins related to lung diseases, including lung tumors, asthma, and pulmonary fibrosis. Collectively, these findings highlight the variations in EV characteristics resulting from the applied approaches and offer compelling suggestions for guiding researchers in selecting a suitable isolation method based on downstream functional studies and clinical applications.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Meng Ye
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
40
|
Rodrigo-Muñoz JM, Gil-Martínez M, Naharro-González S, Del Pozo V. Eosinophil-derived extracellular vesicles: isolation and classification techniques and implications for disease pathophysiology. J Leukoc Biol 2024; 116:260-270. [PMID: 38836652 DOI: 10.1093/jleuko/qiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Eosinophils are leukocytes characterized by their ability to release granule content that is highly rich in enzymes and proteins. Besides the antihelminthic, bactericidal, and antiviral properties of eosinophils and their secretory granules, these also play a prominent role in the pathophysiology of diseases such as asthma, eosinophilic esophagitis, and other hypereosinophilic conditions by causing tissue damage and airway hyperresponsiveness. Although this cell was first recognized mainly for its capacity to release granule content, nowadays other capabilities such as cytokine secretion have been linked to its physiology, and research has found that eosinophils are not only involved in innate immunity, but also as orchestrators of immune responses. Nearly 10 yr ago, eosinophil-derived extracellular vesicles (EVs) were first described; since then, the EV field has grown exponentially, revealing their vital roles in intracellular communication. In this review, we synthesize current knowledge on eosinophil-derived EVs, beginning with a description of what they are and what makes them important regulators of disease, followed by an account of the methodologies used to isolate and characterize EVs. We also summarize current understanding of eosinophil-derived vesicles functionality, especially in asthma, the disease in which eosinophil-derived EVs have been most widely studied, describing how they modulate the role of eosinophils themselves (through autocrine signaling) and the way they affect airway structural cells and airway remodeling. Deeper understanding of this cell type could lead to novel research in eosinophil biology, its role in other diseases, and possible use of eosinophil-derived EVs as therapeutic targets.
Collapse
Affiliation(s)
- José Manuel Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sara Naharro-González
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
| | - Victoria Del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
41
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
42
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00969-z. [PMID: 39023664 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
43
|
He D, Cui B, Lv H, Lu S, Zhu Y, Cheng Y, Dang L, Zhang H. Blood-Derived Extracellular Vesicles as a Promising Liquid Biopsy Diagnostic Tool for Early Cancer Detection. Biomolecules 2024; 14:847. [PMID: 39062561 PMCID: PMC11275243 DOI: 10.3390/biom14070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a significant public health challenge worldwide, and timely screening has the potential to mitigate cancer progression and reduce mortality rates. Currently, early identification of most tumors relies on imaging techniques and tissue biopsies. However, the use of low-cost, highly sensitive, non-invasive detection methods for early cancer screening has become more attractive. Extracellular Vesicles (EVs) released by all living cells contain distinctive biological components, such as nucleic acids, proteins, and lipids. These vesicles play crucial roles in the tumor microenvironment and intercellular communication during tumor progression, rendering liquid biopsy a particularly suitable method for diagnosis. Nevertheless, challenges related to purification methods and validation of efficacy currently hinder its widespread clinical implementation. These limitations underscore the importance of refining isolation techniques and conducting comprehensive investigations on EVs. This study seeks to evaluate the potential of liquid biopsy utilizing blood-derived EVs as a practical, cost-effective, and secure approach for early cancer detection.
Collapse
Affiliation(s)
- Dan He
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Hongkai Lv
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Shuxian Lu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuan Zhu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuqiang Cheng
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Lin Dang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| |
Collapse
|
44
|
Grishaev NA, Moiseeva EO, Chernyshev VS, Komlev AS, Novoselov AM, Yashchenok AM. Studying the small extracellular vesicle capture efficiency of magnetic beads coated with tannic acid. J Mater Chem B 2024; 12:6678-6689. [PMID: 38894640 DOI: 10.1039/d4tb00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The isolation of small extracellular vesicles (sEVs), including those secreted by pathological cells, with high efficiency and purity is highly demanded for research studies and practical applications. Conventional sEV isolation methods suffer from low yield, presence of contaminants, long-term operation and high costs. Bead-assisted platforms are considered to be effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. In this study, magnetically responsive beads made of calcium carbonate (CaCO3) particles impregnated with iron oxide (Fe3O4) nanoparticles are fabricated using a freezing-induced loading (FIL) method. The developed magnetic beads demonstrate sufficient magnetization and can be collected by a permanent magnet, ensuring their rapid and gentle capture from an aqueous solution. The tannic acid on the surface of magnetic beads is formed by a layer-by-layer (LbL) method and is used to induce coupling of sEVs with the surface of magnetic beads. These tannic acid coated magnetic beads (TAMB) were applied to capture sEVs derived from MCF7 and HCT116 cell lines. Quantitative data derived from nanoparticle tracking analysis (NTA) and BCA methods revealed the capture efficiency and recovery yield of about 60%. High-resolution transmission electron microscopy (HRTEM) imaging of sEVs on the surface of TAMBs indicated their structural integrity. Compared with the size exclusion chromatography (SEC) method, the proposed approach demonstrated comparable efficiency in terms of recovery yield and purity, while offering a relatively short operation time. These results highlight the high potential of the TAMB approach for the enrichment of sEVs from biological fluids, such as cell culture media.
Collapse
Affiliation(s)
- Nikita A Grishaev
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| | - Ekaterina O Moiseeva
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| | - Vasiliy S Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, 117997 Moscow, Russia
| | - Aleksei S Komlev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton M Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey M Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| |
Collapse
|
45
|
Mladenović D, Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Radić L, Macut JB, Macut D. Adipose-derived extracellular vesicles - a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome. Endocrine 2024; 85:18-34. [PMID: 38285412 DOI: 10.1007/s12020-024-03702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Obesity is the best described risk factor for the development of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) while the major pathogenic mechanism linking these entities is insulin resistance (IR). IR is primarily caused by increased secretion of proinflammatory cytokines, adipokines, and lipids from visceral adipose tissue. Increased fatty acid mobilization results in ectopic fat deposition in the liver which causes endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress resulting in increased cytokine production and subsequent inflammation. Similarly, IR with hyperinsulinemia cause hyperandrogenism, the hallmark of PCOS, and inflammation in the ovaries. Proinflammatory cytokines from both liver and ovaries aggravate IR thus providing a complex interaction between adipose tissue, liver, and ovaries in inducing metabolic abnormalities in obese subjects. Although many pathogenic mechanisms of IR, NAFLD/MASLD, and PCOS are known, there is still no effective therapy for these entities suggesting the need for further evaluation of their pathogenesis. Extracellular vesicles (EVs) represent a novel cross-talk mechanism between organs and include membrane-bound vesicles containing proteins, lipids, and nucleic acids that may change the phenotype and function of target cells. Adipose tissue releases EVs that promote IR, the development of all stages of NAFLD/MASLD and PCOS, while mesenchymal stem cell-derived AVs may alleviate metabolic abnormalities and may represent a novel therapeutic device in NAFLD/MASLD, and PCOS. The purpose of this review is to summarize the current knowledge on the role of adipose tissue-derived EVs in the pathogenesis of IR, NAFLD/MASLD, and PCOS.
Collapse
Affiliation(s)
- Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelica Bjekić Macut
- University of Belgrade Faculty of Medicine, Department of Endocrinology, UMC Bežanijska kosa, Belgrade, Serbia
| | - Djuro Macut
- University of Belgrade Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
46
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
47
|
Lei X, Xie XN, Yang JX, Li YM. The emerging role of extracellular vesicles in the diagnosis and treatment of autism spectrum disorders. Psychiatry Res 2024; 337:115954. [PMID: 38744180 DOI: 10.1016/j.psychres.2024.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by restricted, repetitive behavioral patterns and deficits in social interactions. The prevalence of ASD has continued to rise in recent years. However, the etiology and pathophysiology of ASD remain largely unknown. Currently, the diagnosis of ASD relies on behavior measures, and there is a lack of reliable and objective biomarkers. In addition, there are still no effective pharmacologic therapies for the core symptoms of ASD. Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted by almost all types of cells. EVs play a vital role in cell-cell communications and are known to bear various biological functions. Emerging evidence demonstrated that EVs are involved in many physiological and pathological processes throughout the body and the content in EVs can reflect the status of the originating cells. EVs have demonstrated the potential of broad applications for the diagnosis and treatment of various brain diseases, suggesting that EVs may have also played a role in the pathological process of ASD. Besides, EVs can be utilized as therapeutic agents for their endogenous substances and biological functions. Additionally, EVs can serve as drug delivery tools as nano-sized vesicles with inherent targeting ability. Here, we discuss the potential of EVs to be considered as promising diagnostic biomarkers and their potential therapeutic applications for ASD.
Collapse
Affiliation(s)
- Xue Lei
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Public Health, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xue-Ni Xie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jia-Xin Yang
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
48
|
Van Es LJC, Possee RD, King LA. Characterisation of extracellular vesicles in baculovirus infection of Spodoptera frugiperda cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e163. [PMID: 38947876 PMCID: PMC11212295 DOI: 10.1002/jex2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an enveloped DNA virus of the Baculoviridae family. This baculovirus is widely exploited for the biological control of insect pest species and as an expression platform to produce recombinant proteins in insect cells. Extracellular vesicles (EVs) are secreted by all cells and are involved in key roles in many biological processes through their cargo consisting of proteins, RNA or DNA. In viral infections, EVs have been found to transfer both viral and cellular cargo that can elicit either a pro- or antiviral response in recipient cells. Here, small EVs (sEVs) released by Spodoptera frugiperda (Sf) insect cells were characterised for the first time. Using S. frugiperda (SfC1B5) cells stably expressing the baculovirus gp64, the viral envelope protein GP64 was shown to be incorporated into sEVs. Sf9 cells were also transfected with a bacmid AcMNPV genome lacking p6.9 (AcΔP6.9) to prevent budded virus production. The protein content of sEVs from both mock- and AcΔP6.9-transfected cells were analysed by mass spectrometry. In addition to GP64, viral proteins Ac-F, ME-53 and viral ubiquitin were identified, as well as many host proteins including TSG101-which may be useful as a protein marker for sEVs.
Collapse
Affiliation(s)
- Lex J. C. Van Es
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Oxford Expression Technologies LtdOxfordUK
| | | | - Linda A. King
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
49
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
50
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|