1
|
Heins A, Hoang MD, Weuster‐Botz D. Advances in automated real-time flow cytometry for monitoring of bioreactor processes. Eng Life Sci 2022; 22:260-278. [PMID: 35382548 PMCID: PMC8961054 DOI: 10.1002/elsc.202100082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Flow cytometry and its technological possibilities have greatly advanced in the past decade as analysis tool for single cell properties and population distributions of different cell types in bioreactors. Along the way, some solutions for automated real-time flow cytometry (ART-FCM) were developed for monitoring of bioreactor processes without operator interference over extended periods with variable sampling frequency. However, there is still great potential for ART-FCM to evolve and possibly become a standard application in bioprocess monitoring and process control. This review first addresses different components of an ART-FCM, including the sampling device, the sample-processing unit, the unit for sample delivery to the flow cytometer and the settings for measurement of pre-processed samples. Also, available algorithms are presented for automated data analysis of multi-parameter fluorescence datasets derived from ART-FCM experiments. Furthermore, challenges are discussed for integration of fluorescence-activated cell sorting into an ART-FCM setup for isolation and separation of interesting subpopulations that can be further characterized by for instance omics-methods. As the application of ART-FCM is especially of interest for bioreactor process monitoring, including investigation of population heterogeneity and automated process control, a summary of already existing setups for these purposes is given. Additionally, the general future potential of ART-FCM is addressed.
Collapse
Affiliation(s)
- Anna‐Lena Heins
- Institute of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Manh Dat Hoang
- Institute of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Dirk Weuster‐Botz
- Institute of Biochemical EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Swaminathan N, Priyanka P, Rathore AS, Sivaparakasam S, Subbiah S. Cole-Cole modeling of real-time capacitance data for estimation of cell physiological properties in recombinant Escherichia coli cultivation. Biotechnol Bioeng 2021; 119:922-935. [PMID: 34964125 DOI: 10.1002/bit.28028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022]
Abstract
Real-time estimation of physiological properties of the cell during recombinant protein production would ensure enhanced process monitoring. In this study, we explored the application of dielectric spectroscopy to track the fed-batch phase of recombinant Escherichia coli cultivation for estimating the physiological properties, viz. cell diameter and viable cell concentration (VCC). The scanning capacitance data from the dielectric spectroscopy were pre-processed using moving average (MA). Later, it was modelled through a nonlinear theoretical Cole-Cole model and further solved using a global evolutionary genetic algorithm (GA). The parameters obtained from the GA were further applied for the estimation of the aforementioned physiological properties. The offline cell diameter and cell viability data were obtained from particle size analyzer and flow cytometry measurements to validate the Cole-Cole model. The offline VCC was calculated from the cell viability % from flow cytometry data and dry cell weight concentration (DCW). The Cole-Cole model predicted the cell diameter and VCC with an error of 1.03% and 7.72%, respectively. The proposed approach can enable the operator to take real-time process decisions in order to achieve desired productivity and product quality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nivedhitha Swaminathan
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Priyanka Priyanka
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Senthilkumar Sivaparakasam
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Senthilmurugan Subbiah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
3
|
Fuge G, Hong Y, Riecken K, Zeng AP, Jandt U. CHO cells engineered for fluorescence read out of cell cycle and growth rate in real time. Biotechnol Prog 2017; 33:1408-1417. [DOI: 10.1002/btpr.2491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Grischa Fuge
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| | - Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation; University Medical Centre (UMC) Hamburg-Eppendorf; Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| | - Uwe Jandt
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
4
|
Rathore AS, Singh SK. Production of Protein Therapeutics in the Quality by Design (QbD) Paradigm. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_5004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Craven S, Whelan J. Process Analytical Technology and Quality-by-Design for Animal Cell Culture. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
|
7
|
Schwamb S, Puskeiler R, Wiedemann P. Monitoring of Cell Culture. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-10320-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
8
|
|
9
|
Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology. Cytotechnology 2014; 68:399-408. [PMID: 25352493 DOI: 10.1007/s10616-014-9791-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications.
Collapse
|
10
|
Farrell A, McLoughlin N, Milne JJ, Marison IW, Bones J. Application of Multi-Omics Techniques for Bioprocess Design and Optimization in Chinese Hamster Ovary Cells. J Proteome Res 2014; 13:3144-59. [DOI: 10.1021/pr500219b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amy Farrell
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Niaobh McLoughlin
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - John J. Milne
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Ian W. Marison
- Laboratory
of Integrated Bioprocessing, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jonathan Bones
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
11
|
García Münzer D, Kostoglou M, Georgiadis M, Pistikopoulos E, Mantalaris A. Developing a cyclin blueprint as a tool for mapping the cell cycle in GS-NS0. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Brognaux A, Han S, Sørensen SJ, Lebeau F, Thonart P, Delvigne F. A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors. Microb Cell Fact 2013; 12:100. [PMID: 24176169 PMCID: PMC4228430 DOI: 10.1186/1475-2859-12-100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022] Open
Abstract
Background Microbial cell population heterogeneity is now recognized as a major source of issues in the development and optimization of bioprocesses. Even if single cell technologies are available for the study of microbial population heterogeneity, only a few of these methods are available in order to study the dynamics of segregation directly in bioreactors. In this context, specific interfaces have been developed in order to connect a flow cytometer directly to a bioreactor for automated analyses. In this work, we propose a simplified version of such an interface and demonstrate its usefulness for multiplexed experiments. Results A low-cost automated flow cytometer has been used in order to monitor the synthesis of a destabilized Green Fluorescent Protein (GFP) under the regulation of the fis promoter and propidium iodide (PI) uptake. The results obtained showed that the dynamics of GFP synthesis are complex and can be attributed to a complex set of biological parameters, i.e. on the one hand the release of protein into the extracellular medium and its uptake modifying the activity of the fis promoter, and on the other hand the stability of the GFP molecule itself, which can be attributed to the protease content and energy status of the cells. In this respect, multiplexed experiments have shown a correlation between heat shock and ATP content and the stability of the reporter molecule. Conclusion This work demonstrates that a simplified version of on-line FC can be used at the process level or in a multiplexed version to investigate the dynamics of complex physiological mechanisms. In this respect, the determination of new on-line parameters derived from automated FC is of primary importance in order to fully integrate the power of FC in dedicated feedback control loops.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank Delvigne
- Unité de Bio-industries/CWBI, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux 5030, Belgium.
| |
Collapse
|
13
|
Shirsat N, Avesh M, English NJ, Glennon B, Al-Rubeai M. Application of statistical techniques for elucidating flow cytometric data of batch and fed-batch cultures. Biotechnol Appl Biochem 2013; 60:536-45. [PMID: 23826910 DOI: 10.1002/bab.1138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/23/2013] [Indexed: 12/21/2022]
Abstract
The objective of this work is to develop structured, segregated stochastic models for bioprocesses using time-series flow cytometric (FC) data. To this end, mammalian CHO cells were grown in both batch and fed-batch cultures, and their viable cell numbers (VCDs), monoclonal antibody (MAb), cell cycle phases, mitochondria membrane potential/mitochondria mass, Golgi apparatus, and endoplasmic reticulum (ER) were analyzed. For the fed-batch mode, soy hydrolysate was introduced at 24-H intervals. The cytometric data were analyzed for early indicators of growth and productivity by multiple linear regression analysis, which involved taking into account multicollinearity diagnostics, Durbin-Watson statistics, and Houston tests to determine and refine statistically significant correlations between categorical variables (FC parameters) and response variables (yield parameters). The results indicate that the percentage of G1 cells and ER was significantly correlated with VCD and MAb in the case of batch culture, whereas for fed-batch culture, the percentage of G2 cells and ER was correlated significantly. There was a significant difference between cells in the batch and fed-batch cultures in their ER content, suggesting that the increase in protein synthesis as reflected by the ER content and consequent increase in growth rate and MAb productivity both can be monitored at the cellular level by FC analysis of ER content.
Collapse
Affiliation(s)
- Nishikant Shirsat
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | |
Collapse
|
14
|
Chong L, Saghafi M, Knappe C, Steigmiller S, Matanguihan C, Goudar CT. Robust on-line sampling and analysis during long-term perfusion cultivation of mammalian cells. J Biotechnol 2013; 165:133-7. [DOI: 10.1016/j.jbiotec.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 03/03/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
15
|
Golden JP, Verbarg J, Howell PB, Shriver-Lake LC, Ligler FS. Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices. Biosens Bioelectron 2012; 40:10-6. [PMID: 22960010 DOI: 10.1016/j.bios.2012.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 02/01/2023]
Abstract
A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose-response curves, demonstrating the potential for quantification of pathogen load in buffer and serum.
Collapse
Affiliation(s)
- J P Golden
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | |
Collapse
|