1
|
Zhang Z, Mlýnský V, Krepl M, Šponer J, Stadlbauer P. Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations. J Chem Inf Model 2024; 64:3896-3911. [PMID: 38630447 PMCID: PMC11094737 DOI: 10.1021/acs.jcim.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
- CEITEC−Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
- National
Center for Biomolecular Research,
Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| |
Collapse
|
2
|
Choi T, Li Z, Song G, Chen HF. Comprehensive Comparison and Critical Assessment of RNA-Specific Force Fields. J Chem Theory Comput 2024; 20:2676-2688. [PMID: 38447040 DOI: 10.1021/acs.jctc.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Molecular dynamics simulations play a pivotal role in elucidating the dynamic behaviors of RNA structures, offering a valuable complement to traditional methods such as nuclear magnetic resonance or X-ray. Despite this, the current precision of RNA force fields lags behind that of protein force fields. In this work, we systematically compared the performance of four RNA force fields (ff99bsc0χOL3, AMBERDES, ff99OL3_CMAP1, AMBERMaxEnt) across diverse RNA structures. Our findings highlight significant challenges in maintaining stability, particularly with regard to cross-strand and cross-loop hydrogen bonds. Furthermore, we observed the limitations in accurately describing the conformations of nonhelical structural motif, terminal nucleotides, and also base pairing and base stacking interactions by the tested RNA force fields. The identified deficiencies in existing RNA force fields provide valuable insights for subsequent force field development. Concurrently, these findings offer recommendations for selecting appropriate force fields in RNA simulations.
Collapse
Affiliation(s)
- Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Oprzeska-Zingrebe EA, Smiatek J. Basket-type G-quadruplex with two tetrads in the presence of TMAO and urea: A molecular dynamics study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
5
|
Green AT, Pickard AJ, Li R, MacKerell AD, Bierbach U, Cho SS. Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes. J Phys Chem B 2022; 126:609-619. [PMID: 35026949 DOI: 10.1021/acs.jpcb.1c08340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. G-quadruplexes have been unambiguously shown to exist both in vitro and in vivo, including in the guanine (G)-rich DNA genes encoding pre-ribosomal RNA (pre-rRNA), which is transcribed in the cell's nucleolus. Recent studies strongly suggest that these DNA sequences ("rDNA"), and the transcribed rRNA, are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis, but the structures of ribosomal G-quadruplexes at atomic resolution are unknown and very little biophysical characterization has been performed on them to date. In the present study, circular dichroism (CD) spectroscopy is used to show that two putative rDNA G-quadruplex sequences, NUC 19P and NUC 23P and their counterpart rRNAs, predominantly adopt parallel topologies, reminiscent of the analogous telomeric quadruplex structures. Based on this information, we modeled parallel topology atomistic structures of the putative ribosomal G-quadruplexes. We then validated and refined the modeled ribosomal G-quadruplex structures using all-atom molecular dynamics (MD) simulations with the CHARMM36 force field in the presence and absence of stabilizing K+. Motivated by preliminary MD simulations of the telomeric parallel G-quadruplex (TEL 24P) in which the K+ ion is expelled, we used updated CHARMM36 force field K+ parameters that were optimized, targeting the data from quantum mechanical calculations and the polarizable Drude model force field. In subsequent MD simulations with optimized CHARMM36 parameters, the K+ ions are predominantly in the G-quadruplex channel and the rDNA G-quadruplexes have more well-defined, predominantly parallel-topology structures as compared to rRNA. In addition, NUC 19P is more structured than NUC 23P, which contains extended loops. Results from this study set the structural foundation for understanding G-quadruplex functions and the design of novel chemotherapeutics against these nucleolar targets and can be readily extended to other DNA and RNA G-quadruplexes.
Collapse
Affiliation(s)
- Adam T Green
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Amanda J Pickard
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rongzhong Li
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
6
|
Chen J, Liu H, Cui X, Li Z, Chen HF. RNA-Specific Force Field Optimization with CMAP and Reweighting. J Chem Inf Model 2022; 62:372-385. [PMID: 35021622 DOI: 10.1021/acs.jcim.1c01148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA plays a key role in a variety of cell activities. However, it is difficult to capture its structure dynamics by the traditional experimental methods because of the inherent limitations. Molecular dynamics simulation has become a valuable complement to the experimental methods. Previous studies have indicated that the current force fields cannot accurately reproduce the conformations and structural dynamics of RNA. Therefore, an RNA-specific force field was developed to improve the conformation sampling of RNA. The distribution of ζ/α dihedrals of tetranucleotides was optimized by a reweighting method, and the grid-based energy correction map (CMAP) term was first introduced into the Amber RNA force field of ff99bsc0χOL3, named ff99OL3_CMAP1. Extensive validations of tetranucleotides and tetraloops show that ff99OL3_CMAP1 can significantly decrease the population of an incorrect structure, increase the consistency between the simulation results and experimental values for tetranucleotides, and improve the stability of tetraloops. ff99OL3_CMAP1 can also precisely reproduce the conformation of a duplex and riboswitches. These findings confirm that the newly developed force field ff99OL3_CMAP1 can improve the conformer sampling of RNA.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China.,Shanghai Center for Bioinformation Technology, 200240 Shanghai, China
| |
Collapse
|
7
|
Asha H, Stadlbauer P, Martínez-Fernández L, Banáš P, Šponer J, Improta R, Esposito L. Early steps of oxidative damage in DNA quadruplexes are position-dependent: Quantum mechanical and molecular dynamics analysis of human telomeric sequence containing ionized guanine. Int J Biol Macromol 2022; 194:882-894. [PMID: 34838862 DOI: 10.1016/j.ijbiomac.2021.11.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Guanine radical cation (G•+) is a key intermediate in many oxidative processes occurring in nucleic acids. Here, by combining mixed Quantum Mechanical/Molecular Mechanics calculations and Molecular Dynamics (MD) simulations, we study how the structural behaviour of a tract GGG(TTAGGG)3 (hereafter Tel21) of the human telomeric sequence, folded in an antiparallel quadruple helix, changes when one of the G bases is ionized to G•+ (Tel21+). Once assessed that the electron-hole is localized on a single G, we perform MD simulations of twelve Tel21+ systems, differing in the position of G•+ in the sequence. When G•+ is located in the tetrad adjacent to the diagonal loop, we observe substantial structural rearrangements, which can decrease the electrostatic repulsion with the inner Na+ ions and increase the solvent exposed surface of G•+. Analysis of solvation patterns of G•+ provides new insights on the main reactions of G•+, i.e. the deprotonation at two different sites and hydration at the C8 atom, the first steps of the processes producing 8oxo-Guanine. We suggest the main structural determinants of the relative reactivity of each position and our conclusions, consistent with the available experimental trends, can help rationalizing the reactivity of other G-quadruplex topologies.
Collapse
Affiliation(s)
- Haritha Asha
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lara Martínez-Fernández
- Departamento de Quimica, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autonoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| | - Luciana Esposito
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| |
Collapse
|
8
|
Ghorbani SM, Housaindokht MR, Bozorgmehr MR. Investigating the effect of 1-Butyl-3-methylimidazolium bromide and 1-Butyl-3-methylimidazolium methyl sulfate ionic liquids on structure and function of Chloroproxidase by molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Roy S, Ali A, Bhattacharya S. Theoretical Insight into the Library Screening Approach for Binding of Intermolecular G-Quadruplex RNA and Small Molecules through Docking and Molecular Dynamics Simulation Studies. J Phys Chem B 2021; 125:5489-5501. [PMID: 34029082 DOI: 10.1021/acs.jpcb.0c10991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interactions of intermolecular G-quadruplex RNA and small molecules have been investigated by computational studies. Various anthraquinone, bisbenzimidazole, and carbazole-benzimidazole based ligands have shown a distinct preference to G-quadruplex structures as opposed to the corresponding duplex forms of DNA that were docked with telomeric G-quadruplex RNA. The comparative binding study of such ligands with G-quadruplex (G4) RNA showed higher binding affinities toward carbazole-benzimidazole ligands than those of the anthraquinone and bisbenzimidazole based ligands. A molecular dynamics simulation study was used to examine quadruplex-ligand interactions. Analysis of the binding free energy indicated the formation of the thermodynamically favorable RNA-ligand complex. The formation of several H-bonding interactions and the change of the solvent accessible surface area (SASA) also support the effective binding of the carbazole-benzimidazole ligands with G4 RNA structures. Thus, the library screening approach has assisted in getting a structure-activity relationship for the selected small molecules toward the G-quadruplex RNA binding, which can be applied in the targeting of G-quadruplex RNA medicated anticancer therapeutics.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| |
Collapse
|
10
|
Kharel P, Becker G, Tsvetkov V, Ivanov P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res 2020; 48:12534-12555. [PMID: 33264409 PMCID: PMC7736831 DOI: 10.1093/nar/gkaa1126] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine-quadruplexes (G4s) are non-canonical four-stranded structures that can be formed in guanine (G) rich nucleic acid sequences. A great number of G-rich sequences capable of forming G4 structures have been described based on in vitro analysis, and evidence supporting their formation in live cells continues to accumulate. While formation of DNA G4s (dG4s) within chromatin in vivo has been supported by different chemical, imaging and genomic approaches, formation of RNA G4s (rG4s) in vivo remains a matter of discussion. Recent data support the dynamic nature of G4 formation in the transcriptome. Such dynamic fluctuation of rG4 folding-unfolding underpins the biological significance of these structures in the regulation of RNA metabolism. Moreover, rG4-mediated functions may ultimately be connected to mechanisms underlying disease pathologies and, potentially, provide novel options for therapeutics. In this framework, we will review the landscape of rG4s within the transcriptome, focus on their potential impact on biological processes, and consider an emerging connection of these functions in human health and disease.
Collapse
Affiliation(s)
- Prakash Kharel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gertraud Becker
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Federal Research and Clinical Center for Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow 119435, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 117912, Russia
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
11
|
Balasubramanian S, Senapati S. Dynamics and Barrier of Movements of Sodium and Potassium Ions Across the Oxytricha nova G-Quadruplex Core. J Phys Chem B 2020; 124:11055-11066. [PMID: 33238706 DOI: 10.1021/acs.jpcb.0c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-quadruplexes (GQs) are highly stable noncanonical forms of nucleic acids that are present in important genomic regions. The central core of the GQ is lined up by four closely spaced carbonyl groups from the G-quartets, and the resulting electrostatic repulsion is neutralized by the coordinating cations. In spite of several reports on GQ structure and cation-GQ interactions, the atomic- to molecular-level understanding of the ion dynamics and ion exchange in the GQ core is quite poor. Here, we attempt to elucidate the mechanism of Na+ and K+ binding to the GQ core and trace the exchange of these ions with the ions in bulk by means of all-atomic molecular dynamics (MD) simulations. One of the most studied GQs, Oxytricha nova telomeric G-quadruplex (OxyGQ), is taken as the representative GQ. Subsequently, umbrella sampling MD simulations were performed to elucidate the energetics of ion translocation from one end to the other end of the GQ central core. Our study highlights the importance of ion hydration for the uptake and correct positioning of the cations in the core. The free-energy landscape of ion transport has shown favorable in-plane binding of Na+ ions with GQ quartets, which matches very well with the crystal structure. The binding of K+ ions, on the other hand, was out-of-plane and its translocation required a larger barrier to cross.
Collapse
Affiliation(s)
- Sangeetha Balasubramanian
- Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
12
|
Nayis A, Liebl K, Frost CV, Zacharias M. Targeting Telomeres: Molecular Dynamics and Free Energy Simulation of Gold-Carbene Binding to DNA. Biophys J 2020; 120:101-108. [PMID: 33285115 DOI: 10.1016/j.bpj.2020.11.2263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023] Open
Abstract
DNA sequences in regulatory regions and in telomers at the ends of chromosomes frequently contain tandem repeats of guanine nucleotides that can form stacked structures stabilized by Hoogsten pairing and centrally bound monovalent cations. The replication and elongation of telomeres requires the disruption of these G-quadruplex structures. Hence, drug molecules such as gold (Au)-carbene that stabilize G-quadruplexes may also interfere with the elongation of telomeres and, in turn, could be used to control cell replication and growth. To better understand the molecular mechanism of Au-carbene binding to G-quadruplexes, we employed molecular dynamics simulations and free energy simulations. Whereas very restricted mobility of two Au-carbene ligands was found upon binding as a doublet to one side of the G-quadruplex, much larger translational and orientational mobility was observed for a single Au-carbene binding at the second G-quadruplex surface. Comparative simulations on duplex DNA in the presence of Au-carbene ligands indicates a preference for the minor groove and weaker unspecific and more salt-dependent binding than to the G-quadruplex surface. Analysis of energetic contributions reveals a dominance of nonpolar and van der Waals interactions to drive binding. The simulations can also be helpful for proposing possible modifications that could improve Au-carbene affinity and specificity for G-quadruplex binding.
Collapse
Affiliation(s)
- Asmar Nayis
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Korbinian Liebl
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Christina V Frost
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany.
| |
Collapse
|
13
|
Schauperl M, Kantonen SM, Wang LP, Gilson MK. Data-driven analysis of the number of Lennard-Jones types needed in a force field. Commun Chem 2020; 3:173. [PMID: 34295996 PMCID: PMC8294475 DOI: 10.1038/s42004-020-00395-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Force fields used in molecular simulations contain numerical parameters, such as Lennard-Jones (LJ) parameters, which are assigned to the atoms in a molecule based on a classification of their chemical environments. The number of classes, or types, should be no more than needed to maximize agreement with experiment, as parsimony avoids overfitting and simplifies parameter optimization. However, types have historically been crafted based largely on chemical intuition, so current force fields may contain more types than needed. In this study, we seek the minimum number of LJ parameter types needed to represent key properties of organic liquids. We find that highly competitive force field accuracy is obtained with minimalist sets of LJ types; e.g. two H types and one type apiece for C, O, and N atoms. We also find that the fitness surface has multiple minima, which can lead to local trapping of the optimizer.
Collapse
Affiliation(s)
- Michael Schauperl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0751, University of California, San Diego, CA 92093-0751 USA
| | - Sophie M Kantonen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0751, University of California, San Diego, CA 92093-0751 USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0751, University of California, San Diego, CA 92093-0751 USA
| |
Collapse
|
14
|
Yuan Y, Ma Y, Huo D, Mills MJL, Wei J, Su W, Zhang R. Multipolar Description of Atom-Atom Electrostatic Interaction Energies in Single/Double-Stranded DNAs. J Phys Chem B 2020; 124:10089-10103. [PMID: 33138384 DOI: 10.1021/acs.jpcb.0c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular force field simulation is an effective method to explore the properties of DNA molecules in depth. Almost all current popular force fields calculate atom-atom electrostatic interaction energies for DNAs based on the atomic charge and dipole or quadrupole moments, without considering high-rank atomic multipole moments for more accurate electrostatics. Actually, the distribution of electrons around atomic nuclei is not spherically symmetric but is geometry dependent. In this work, a multipole expansion method that allows us to combine polarizability and anisotropy was applied. One single-stranded DNA and one double-stranded DNA were selected as pilot systems. Deoxynucleotides were cut out from pilot systems and capped by mimicking the original DNA environment. Atomic multipole moments were integrated instead of fixed-point charges to calculate atom-atom electrostatic energies to improve the accuracy of force fields for DNA simulations. Also, the applicability of modeling the behavior of both single-stranded and double-stranded DNAs was investigated. The calculation results indicated that the models can be transferred from pilot systems to test systems, which is of great significance for the development of future DNA force fields.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Yan Ma
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Dongxu Huo
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Matthew J L Mills
- 3M Corporate Research Analytical Laboratory, Saint Paul, Minnesota 55114, United States
| | - Jiaxuan Wei
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
15
|
Pantatosaki E, Papadopoulos GK. Binding Dynamics of siRNA with Selected Lipopeptides: A Computer-Aided Study of the Effect of Lipopeptides' Functional Groups and Stereoisomerism. J Chem Theory Comput 2020; 16:3842-3855. [PMID: 32324997 DOI: 10.1021/acs.jctc.9b01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The engineering issues pertaining to nanoparticle systems toward targeted gene therapies have not been fully probed. Recent experiments have identified specific structural characteristics of a novel class of lipopeptides (LP) that may lead to potent nanocarriers intended as RNAi therapeutics, albeit the molecular mechanism that underlies their performance remains unexplored. We conducted molecular dynamics simulations in atomistic detail coupled with free energy computations to study the dynamics and thermodynamics of an acrylate- and an epoxide-derived LP, members of the aforesaid class, upon their binding to siRNA in aqueous solution aiming at examining structure-potency relations. We found that the entropic part of the free energy of binding predominates; moreover, the first LP class tends to disrupt the Watson-Crick base pairing of siRNA, whereas the latter leaves the double helix intact. Moreover, the identified tug-of-war effect between LP-water and LP-siRNA hydrogen bonding in the supramolecular complex can underpin synthesis routes toward tuning the association dynamics. Our simulations on two diastereomers of the epoxide-derived LP showed significant structural and energetics differences upon binding, as a result of steric effects imposed by the different absolute configurations at their chiral centers. These findings may serve as crucial design parameters toward modulating the interplay between complex stability and ease of releasing the nucleic acid drug into the cell.
Collapse
Affiliation(s)
- Evangelia Pantatosaki
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - George K Papadopoulos
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Kasprzak WK, Ahmed NA, Shapiro BA. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr Opin Biotechnol 2020; 63:16-25. [DOI: 10.1016/j.copbio.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
17
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Temperature and molecular crowding effects on the sensitivity of T30695 aptamer toward Pb2+ion: a joint molecular dynamics simulation and experimental study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1751842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
18
|
Abstract
The restrained electrostatic potential (RESP) approach is a highly regarded and widely used method of assigning partial charges to molecules for simulations. RESP uses a quantum-mechanical method that yields fortuitous overpolarization and thereby accounts only approximately for self-polarization of molecules in the condensed phase. Here we present RESP2, a next generation of this approach, where the polarity of the charges is tuned by a parameter, δ, which scales the contributions from gas- and aqueous-phase calculations. When the complete non-bonded force field model, including Lennard-Jones parameters, is optimized to liquid properties, improved accuracy is achieved, even with this reduced set of five Lennard-Jones types. We argue that RESP2 with δ≈0.6 (60% aqueous, 40% gas-phase charges) is an accurate and robust method of generating partial charges, and that a small set of Lennard-Jones types is good starting point for a systematic re-optimization of this important non-bonded term.
Collapse
|
19
|
Milovanović B, Stanojević A, Etinski M, Petković M. Intriguing Intermolecular Interplay in Guanine Quartet Complexes with Alkali and Alkaline Earth Cations. J Phys Chem B 2020; 124:3002-3014. [DOI: 10.1021/acs.jpcb.0c01165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Stanojević
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
20
|
Ghorbani Sangoli M, Housaindokht MR, Bozorgmehr MR. Effects of the deglycosylation on the structure and activity of chloroperoxidase: Molecular dynamics simulation approach. J Mol Graph Model 2020; 97:107570. [PMID: 32097885 DOI: 10.1016/j.jmgm.2020.107570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Chloroperoxidase (CPO) is a versatile fungal heme-thiolate protein that catalyzes a variety of one electron and two-electron oxidations. Chloroperoxidase is a versatile fungal heme-thiolate protein that catalyzes a variety of oxidations. CPO enzyme contains thirteen sugars, including five N-acetyl D-glucosamines (NAG) and eight mannoses (MAN), which are attached to the protein via the glycosidic bonds. Removal of the sugars from CPO leads to increase the hydrophobicity of the enzyme, as well as the reduction of the alkylation reactions. However, due to the lack of the proper force field for the sugars, they are ignored in the theoretical studies. The present study aims to assess the effects of the sugar segments on the structure and activity of CPO through the simulation of the halo structure and the structures without the sugar segment. Despite the difficulty of the process and being time-consuming, the suitable force field is introduced successfully for the sugars. According to molecular dynamics simulation (MD), seven channels and fifteen cavities are identified in the CPO structure. Two of the channels provide the substrate access to the active site. The MD simulation results reveal that the removal of NAG decreases the number of the cavities from fifteen to eleven. Besides, the removal of NAG is associated with removing the channel providing the substrate access. The number of the cavities decreases from fifteen to fourteen through the removal of MAN; however, channel providing the substrate access to the active site is partly preserved. The MD simulation results indicate that the structures without the sugar units are more compact in comparison with the halo structures. The removal of the sugar segments induces the significant changes in the flexibility of the residues that affect the catalytic activity of the enzyme. As a result, the enzyme activities, such as the oxidation, alkylation, halogenation, and epoxidation cannot occur when the sugar segments of the enzyme are removed.
Collapse
Affiliation(s)
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
21
|
Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Chen B, Fountain G, Sullivan HJ, Paradis N, Wu C. To probe the binding pathway of a selective compound (D089-0563) to c-MYC Pu24 G-quadruplex using free ligand binding simulations and Markov state model analysis. Phys Chem Chem Phys 2020; 22:22567-22583. [DOI: 10.1039/d0cp03863f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive.
Collapse
Affiliation(s)
- Brian Chen
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| | | | | | | | - Chun Wu
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| |
Collapse
|
23
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. The investigation of the G-quadruplex aptamer selectivity to Pb 2+ ion: a joint molecular dynamics simulation and density functional theory study. J Biomol Struct Dyn 2019; 38:3659-3675. [PMID: 31496379 DOI: 10.1080/07391102.2019.1664933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
24
|
Interaction of (G4)2 and (X4)2 DNA quadruplexes with Cu+, Ag+ and Au+ metal cations: a quantum chemical calculation on structural, energetic and electronic properties. Struct Chem 2019. [DOI: 10.1007/s11224-019-01421-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Theoretical design and experimental study of new aptamers with the improved target-affinity: New insights into the Pb2+-specific aptamers as a case study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Sullivan HJ, Readmond C, Radicella C, Persad V, Fasano TJ, Wu C. Binding of Telomestatin, TMPyP4, BSU6037, and BRACO19 to a Telomeric G-Quadruplex-Duplex Hybrid Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. ACS OMEGA 2018; 3:14788-14806. [PMID: 30555989 PMCID: PMC6289566 DOI: 10.1021/acsomega.8b01574] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
A promising anticancer therapeutic strategy is the stabilization of telomeric G-quadruplexes using G-quadruplex-binding small molecules. Although many G-quadruplex-specific ligands have been developed, their low potency and selectivity to G-quadruplexes over duplex remains unsolved. Recently, a crystal structure of a telomeric 3' quadruplex-duplex hybrid was reported and the quadruplex-duplex interface was suggested to a good target to address the issues. However, there are no high-resolution complex structures reported for G-quadruplex ligands except for a docked BSU6037. In this study, molecular dynamic (MD) binding simulations with a free ligand were used to study binding poses and dynamics of four representative ligands: telomestatin, TMPyP4, BSU6037, and BRACO19. The MD data showed that BSU6037 was able to fully intercalate into the interface whereas TMPyP4 and BRACO19 could only maintain partial intercalation into the interface and telomestatin only binds at the quadruplex and duplex ends. Both linear ligands, BSU6037 and BRACO19, were able to interact with the interface, yet they were not selective over duplex DNA. The DNA geometry, binding modes, and binding pathways were systematically characterized, and the binding energy was calculated and compared for each system. The interaction of the ligands to the interface was by the means of an induced-fit binding mechanism rather than a lock-key mechanism, consisting of the DNA unfolding at the interface to allow entrance of the drug and then the refolding and repacking of the DNA and the ligand to further stabilize the G-quadruplex. On the basis of the findings in this study, modifications were suggested to optimize the interface binding for TMPyp4 and telomestatin.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Carolyn Readmond
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Christina Radicella
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Victoria Persad
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Thomas J. Fasano
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
27
|
Pal S, Paul S. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr 2+: A classical molecular dynamics simulation study. Int J Biol Macromol 2018; 121:350-363. [PMID: 30308284 DOI: 10.1016/j.ijbiomac.2018.09.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
Thrombin binding TBA-G-quadruplex aptamer (TBA) plays a major role in blood coagulation cascade. The 15-mer TBA sequence tends to form four-stranded TBA-G-quadruplex structure. In this research work, a series of explicit solvent classical MD simulations of the TBA is carried out using different salt (SrCl2) concentrations (0, 50, 100 and 200 mM). Here we have also testified the effect of salt concentration of divalent cation Sr2+ on the conformational change of quadruplex DNA. The structural deviations, fluctuations, torsional angles and the affinity of the ion are explored at different salt concentrations. It is found that the conformation of TBA-G-quadruplex at 0 mM and 50 mM salt concentrations, is very much different than the other salt concentrations (100 mM and 200 mM). Also observed are as follows: (i) no exchange of Sr2+ ion between inside and outside of the channel, (ii) an enhancement in the Sr2+ ion density around the phosphate region of the loop residues as salt concentration increases and (iii) the stacking of T3 and T4 residues of loop-1 that appears up to 50 mM concentration, vanishes as the salt concentration is increased further.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
28
|
Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S, Sponer J. Structural Dynamics of Lateral and Diagonal Loops of Human Telomeric G-Quadruplexes in Extended MD Simulations. J Chem Theory Comput 2018; 14:5011-5026. [DOI: 10.1021/acs.jctc.8b00543] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barira Islam
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marek Havrila
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of
Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Jiri Sponer
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
29
|
Villani G. Quantum Mechanical Investigation of the G-Quadruplex Systems of Human Telomere. ACS OMEGA 2018; 3:9934-9944. [PMID: 31459122 PMCID: PMC6644616 DOI: 10.1021/acsomega.8b01678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 05/17/2023]
Abstract
The three G-quadruplexes involved in the human telomere have been studied with an accurate quantum mechanical approach, and the possibility of reducing them to a simpler model has been tested. The similarities and the differences of these three systems are shown and discussed. Each system has been analyzed through different properties and compared to the others. In particular, we have considered: (1) the shape of the cavity and the atomic charges around it; (2) the electric field in and out of the cavity; (3) the stabilization energy due to the stacking of G-tetrads, to the H-bonds and to the ion interactions; and, finally, (4) to study the mechanism of the process of the ion inclusion in the cavity, the curves of potential energy due to the movement of the Na+ and K+ ions toward the cavity. The results suggest that a detailed study is essential in order to obtain the quantitative properties of these complex systems, but also that some qualitative behaviors can be schematized. Our study makes it clear that the entry of an ion in the cavity of these systems is a complex process, where it is possible to find stable structures with the ion out and in the cavity. Moreover, it is possible that more than one diabatic state is involved in this process.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici, ICCOM—CNR
(UOS Pisa), Area della Ricerca di Pisa, Via G. Moruzzi, 1, I-56124 Pisa, Italy
| |
Collapse
|
30
|
The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Akhshi P, Wu G. Umbrella sampling molecular dynamics simulations reveal concerted ion movement through G-quadruplex DNA channels. Phys Chem Chem Phys 2018; 19:11017-11025. [PMID: 28327752 DOI: 10.1039/c7cp01028a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have applied the umbrella sampling (US) method in all-atom molecular dynamics (MD) simulations to obtain potential of mean force (PMF) profiles for ion transport through three representative G-quadruplex DNA channels: [d(TG4T)]4, [d(G3T4G4)]2, and d[G4(T4G4)3]. The US MD results are in excellent agreement with those obtained previously with the adaptive biasing force (ABF) method. We then utilized the unique features in the US MD method to investigate multi-ion effects in [d(G3T4G4)]2 and discovered that the concerted ion movement is crucial for fully explaining the unusual experimental results on ion movement in this particular G-quadruplex system. We anticipate that these modern free-energy methods will be useful tools in evaluating ion transport properties of other G-quadruplex DNA channels.
Collapse
Affiliation(s)
- Parisa Akhshi
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
32
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
33
|
Deng N, Wickstrom L, Cieplak P, Lin C, Yang D. Resolving the Ligand-Binding Specificity in c-MYC G-Quadruplex DNA: Absolute Binding Free Energy Calculations and SPR Experiment. J Phys Chem B 2017; 121:10484-10497. [PMID: 29086571 DOI: 10.1021/acs.jpcb.7b09406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the absolute binding free energy calculation and surface plasmon resonance (SPR) experiment for ligand binding with the c-MYC G-quadruplex DNA. The unimolecular parallel DNA G-quadruplex formed in nuclease hypersensitivity element III1 of the c-MYC gene promoter regulates the c-MYC transcription and is recognized as an emerging drug target for cancer therapy. Quindoline derivatives have been shown to stabilize the G-quadruplex and inhibit the c-MYC expression in cancer cells. NMR revealed two binding sites located at the 5' and 3' termini of the G-quadruplex. Questions about which site is more favored and the basis for the ligand-induced binding site formation remain unresolved. Here, we employ two absolute binding free energy methods, the double decoupling and the potential of mean force methods, to dissect the ligand-binding specificity in the c-MYC G-quadruplex. The calculated absolute binding free energies are in general agreement with the SPR result and suggest that quindoline has a slight preference for the 5' site. The flanking residues around the two sites undergo significant reorganization as the ligand unbinds, which provides evidence for ligand-induced binding pocket formation. The results help interpret experimental data and inform rational design of small molecules targeting the c-MYC G-quadruplex.
Collapse
Affiliation(s)
- Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University , 1 Pace Plaza, New York, New York 10038, United States
| | - Lauren Wickstrom
- Department of Science, Borough of Manhattan Community College, the City University of New York , New York, New York 10007, United States
| | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute , La Jolla, San Diego, California 92037, United States
| | - Clement Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Machireddy B, Kalra G, Jonnalagadda S, Ramanujachary K, Wu C. Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. J Chem Inf Model 2017; 57:2846-2864. [PMID: 29028340 DOI: 10.1021/acs.jcim.7b00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human telomeric DNA G-quadruplex has been identified as a good therapeutic target in cancer treatment. G-quadruplex-specific ligands that stabilize the G-quadruplex have great potential to be developed as anticancer agents. Two crystal structures (an apo form of parallel stranded human telomeric G-quadruplex and its holo form in complex with BRACO19, a potent G-quadruplex ligand) have been solved, yet the binding mechanism and pathway remain elusive. In this study, we simulated the binding of a free BRACO19 molecule to the apo form of the G-quadruplex using the latest AMBER DNA (OL15) and ligand (GAFF2) force fields. Three binding modes have been identified: top stacking, bottom intercalation, and groove binding. Bottom intercalation (51% of the population) resembles the bottom binding pose in the complex crystal structure very well. The groove binding mode is less stable than the bottom binding mode and is likely to be an intermediate state leading to the bottom binding mode. A flip-insertion mechanism was observed in the bottom intercalation mode, during which flipping of the bases outward makes space for ligand insertion, after which the bases flip back to increase the stability of the complex. In addition to reproducing the base-flipping behavior for some loop residues upon ligand binding, the direct alignment type of the ATAT-tetrad was observed in our simulations for the first time. These successes provide initial support for using this combination of the OL15 and GAFF2 force fields to study quadruplex-ligand interactions.
Collapse
Affiliation(s)
- Babitha Machireddy
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Gurmannat Kalra
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Subash Jonnalagadda
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Kandalam Ramanujachary
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| |
Collapse
|
35
|
Melvin RL, Gmeiner WH, Salsbury FR. All-atom MD indicates ion-dependent behavior of therapeutic DNA polymer. Phys Chem Chem Phys 2017; 19:22363-22374. [PMID: 28805211 PMCID: PMC5600158 DOI: 10.1039/c7cp03479b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the efficacy of and creating delivery mechanisms for therapeutic nucleic acids requires understanding structural and kinetic properties which allow these polymers to promote the death of cancerous cells. One molecule of interest is a 10 mer of FdUMP (5-fluoro-2'-deoxyuridine-5'-O-monophosphate) - also called F10. Here we investigate the structural and kinetic behavior of F10 in intracellular and extracellular solvent conditions along with non-biological conditions that may be efficacious in in vitro preparations of F10 delivery systems. From our all-atom molecular dynamics simulations totaling 80 microseconds, we predict that F10's phosphate groups form close-range interactions with calcium and zinc ions, with calcium having the highest affinity of the five ions investigated. We also predict that F10's interactions with magnesium, potassium and sodium are almost exclusively long-range interactions. In terms of intramolecular interactions, we find that F10 is least structured (in terms of hydrogen bonds among bases) in the 150 mM NaCl (extracellular-like solvent conditions) and most structured in 150 mM ZnCl2. Kinetically, we see that F10 is unstable in the presence of magnesium, sodium or potassium, finding stable kinetic traps in the presence of calcium or zinc.
Collapse
Affiliation(s)
- Ryan L Melvin
- Department of Physics, Wake Forest University, Winston Salem, NC, USA.
| | | | | |
Collapse
|
36
|
Siebenmorgen T, Zacharias M. Origin of Ion Specificity of Telomeric DNA G-Quadruplexes Investigated by Free-Energy Simulations. Biophys J 2017; 112:2280-2290. [PMID: 28591601 DOI: 10.1016/j.bpj.2017.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
Telomeric DNA consists of tandem repeats of the sequence d(TTAGGG) that form G-quadruplex structures made of stacked guanines with monovalent cations bound at a central cavity. Although different ions can stabilize a G-quadruplex structure, the preferred bound ions are typically K+ or Na+. Several different strand-folding topologies have been reported for Q-quadruplexes formed from telomeric repeats depending on DNA length and ion solution condition. This suggests a possible dependence of the ion selectivity of the central pore on the folding topology of the quadruplex. Molecular dynamics free energy perturbation has been employed to systematically study the relative affinity of the central quadruplex pore for different cation types and the associated energetic and solvation contributions to ion selectivity. The calculations have been performed on two different common quadruplex folding topologies. For both topologies, the same ion selectivity was found with a preference for K+ followed by Rb+ and Na+, which agrees with the experimentally determined preference for most investigated quadruplexes. The selectivity is determined by a balance between attractive Coulomb interactions and loss of hydration but also modulated by van der Waals contributions. Specificity is mediated by the central guanines and no significant contribution of the nucleic acid backbone. The simulations indicate that different topologies might be stabilized by ions bound at the surface or alternative sites of the quadruplex because the ion specificity of the central pore does not depend on the strand folding topology.
Collapse
Affiliation(s)
- Till Siebenmorgen
- Physics Department, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany.
| |
Collapse
|
37
|
Shen Z, Mulholland KA, Zheng Y, Wu C. Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands. J Mol Model 2017; 23:256. [PMID: 28785893 DOI: 10.1007/s00894-017-3417-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG)2) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT)4) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.
Collapse
Affiliation(s)
- Zhanhang Shen
- School of Physics, Shandong University, Jinan, 250100, China
| | - Kelly A Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan, 250100, China.
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
38
|
Havrila M, Stadlbauer P, Islam B, Otyepka M, Šponer J. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J Chem Theory Comput 2017; 13:3911-3926. [PMID: 28657760 DOI: 10.1021/acs.jctc.7b00257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG]4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG]4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na+ ions move inside the GQs in a concerted manner, while larger relocations of the K+ ions are typically separated. We suggest that the Joung-Cheatham SPC/E K+ parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Hanke CA, Gohlke H. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch. PLoS One 2017; 12:e0179271. [PMID: 28640851 PMCID: PMC5480868 DOI: 10.1371/journal.pone.0179271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/27/2017] [Indexed: 12/18/2022] Open
Abstract
Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated.
Collapse
Affiliation(s)
- Christian A. Hanke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Yurenko YP, Novotný J, Marek R. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models. Chemistry 2017; 23:5573-5584. [PMID: 28225208 DOI: 10.1002/chem.201700236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 12/30/2022]
Abstract
The topology and energetics of guanine (G) quadruplexes is governed by supramolecular interactions within their strands. In this work, an extensive quantum mechanical (QM) study has been performed to analyze supramolecular interactions that shape the stems of (4+0) parallel (P) and (2+2) antiparallel (AP) quadruplex systems. The large-scale (≈400 atoms) models of P and AP were constructed from high-quality experimental structures. The results provide evidence that each of the P and AP structures is shaped by a distinct network of supramolecular interactions. Analysis of electron topological characteristics of hydrogen bonds in P and AP systems indicates that the P model benefits from stronger intratetrad hydrogen bonding. For intertetrad stacking interactions, both noncovalent interaction plot and energy decomposition analysis approaches suggest that the stem of the P quadruplex benefits more from stacking than that of the AP stem; the difference in energetic stabilization for the two topologies is about 10 %. Stronger hydrogen-bonding and stacking interactions in the stem of the P quadruplex, relative to those in the AP system, can be an important indicator to explain the experimental observations that guanine-rich oligonucleotides tend to form all-parallel stems with an all-anti orientation of nucleobases. However, in addition to intrinsic stabilization, partial desolvation effects, which affect the energetics and dynamics of the G-quadruplex folding process, call for further investigations.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
| |
Collapse
|
41
|
Rebič M, Mocci F, Uličný J, Lyubartsev AP, Laaksonen A. Coarse-Grained Simulation of Rodlike Higher-Order Quadruplex Structures at Different Salt Concentrations. ACS OMEGA 2017; 2:386-396. [PMID: 31457446 PMCID: PMC6641151 DOI: 10.1021/acsomega.6b00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 05/03/2023]
Abstract
We present a coarse-grained (CG) model of a rodlike higher-order quadruplex with explicit monovalent salts, which was developed from radial distribution functions of an underlying reference atomistic molecular dynamics simulation using inverse Monte Carlo technique. This work improves our previous CG model and extends its applicability beyond the minimal salt conditions, allowing its use at variable ionic strengths. The strategies necessary for the model development are clearly explained and discussed. The effects of the number of stacked quadruplexes and varied salt concentration on the elasticity of the rodlike higher-order quadruplex structures are analyzed. The CG model reproduces the deformations of the terminal parts in agreement with experimental observations without introducing any special parameters for terminal beads and reveals slight differences in the rise and twist of the G-quartet arrangement along the studied biopolymer. The conclusions of our study can be generalized for other G-quartet-based structures.
Collapse
Affiliation(s)
- Matúš Rebič
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Department of Biophysics, Faculty
of Science and Centre for Multimodal Imaging (CMI),
Department of Biophysics, Institute of Physics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
| | - Francesca Mocci
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Jozef Uličný
- Department of Biophysics, Faculty
of Science and Centre for Multimodal Imaging (CMI),
Department of Biophysics, Institute of Physics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Alexander P. Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Aatto Laaksonen
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
- Stellenbosch
Institute of Advanced Study (STIAS), Wallenberg
Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
- E-mail: . Phone: +46 8 162372 (A.L.)
| |
Collapse
|
42
|
Abstract
Minima of the electric field and positions of K+ and Na+ (zero of the x-coordinate is the center of the cavity).
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici
- ICCOM – UOS Pisa
- Area della Ricerca del CNR
- I-56124 Pisa
- Italy
| |
Collapse
|
43
|
Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, Haider S, Neidle S, Otyepka M. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Acta Gen Subj 2016; 1861:1246-1263. [PMID: 27979677 DOI: 10.1016/j.bbagen.2016.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. SCOPE OF REVIEW We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. MAJOR CONCLUSIONS The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. GENERAL SIGNIFICANCE We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
44
|
Melvin RL, Godwin RC, Xiao J, Thompson WG, Berenhaut KS, Salsbury FR. Uncovering Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge. J Chem Theory Comput 2016; 12:6130-6146. [PMID: 27802394 PMCID: PMC5719493 DOI: 10.1021/acs.jctc.6b00757] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the length of molecular dynamics (MD) trajectories grows with increasing computational power, so does the importance of clustering methods for partitioning trajectories into conformational bins. Of the methods available, the vast majority require users to either have some a priori knowledge about the system to be clustered or to tune clustering parameters through trial and error. Here we present non-parametric uses of two modern clustering techniques suitable for first-pass investigation of an MD trajectory. Being non-parametric, these methods require neither prior knowledge nor parameter tuning. The first method, HDBSCAN, is fast-relative to other popular clustering methods-and is able to group unstructured or intrinsically disordered systems (such as intrinsically disordered proteins, or IDPs) into bins that represent global conformational shifts. HDBSCAN is also useful for determining the overall stability of a system-as it tends to group stable systems into one or two bins-and identifying transition events between metastable states. The second method, iMWK-Means, with explicit rescaling followed by K-Means, while slower than HDBSCAN, performs well with stable, structured systems such as folded proteins and is able to identify higher resolution details such as changes in relative position of secondary structural elements. Used in conjunction, these clustering methods allow a user to discern quickly and without prior knowledge the stability of a simulated system and identify both local and global conformational changes.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ryan C. Godwin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - William G. Thompson
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Kenneth S. Berenhaut
- Department of Mathematics & Statistics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
45
|
Stadlbauer P, Mazzanti L, Cragnolini T, Wales DJ, Derreumaux P, Pasquali S, Šponer J. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J Chem Theory Comput 2016; 12:6077-6097. [DOI: 10.1021/acs.jctc.6b00667] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Departments of Physical
Chemistry, Faculty of Science, Palacký University, 17. listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Liuba Mazzanti
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Tristan Cragnolini
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
46
|
Mulholland K, Wu C. Binding of Telomestatin to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. J Chem Inf Model 2016; 56:2093-2102. [DOI: 10.1021/acs.jcim.6b00473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
47
|
Krepl M, Cléry A, Blatter M, Allain FHT, Sponer J. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res 2016; 44:6452-70. [PMID: 27193998 PMCID: PMC5291263 DOI: 10.1093/nar/gkw438] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 01/28/2023] Open
Abstract
RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM-RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein-RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein-RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for 'MD-adapted structure ensemble' as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein-RNA complexes.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Blatter
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Frederic H T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
48
|
Rebič M, Laaksonen A, Šponer J, Uličný J, Mocci F. Molecular Dynamics Simulation Study of Parallel Telomeric DNA Quadruplexes at Different Ionic Strengths: Evaluation of Water and Ion Models. J Phys Chem B 2016; 120:7380-91. [PMID: 27379924 DOI: 10.1021/acs.jpcb.6b06485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most molecular dynamics (MD) simulations of DNA quadruplexes have been performed under minimal salt conditions using the Åqvist potential parameters for the cation with the TIP3P water model. Recently, this combination of parameters has been reported to be problematic for the stability of quadruplex DNA, especially caused by the ion interactions inside or near the quadruplex channel. Here, we verify how the choice of ion parameters and water model can affect the quadruplex structural stability and the interactions with the ions outside the channel. We have performed a series of MD simulations of the human full-parallel telomeric quadruplex by neutralizing its negative charge with K(+) ions. Three combinations of different cation potential parameters and water models have been used: (a) Åqvist ion parameters, TIP3P water model; (b) Joung and Cheatham ion parameters, TIP3P water model; and (c) Joung and Cheatham ion parameters, TIP4Pew water model. For the combinations (b) and (c), the effect of the ionic strength has been evaluated by adding increasing amounts of KCl salt (50, 100, and 200 mM). Two independent simulations using the Åqvist parameters with the TIP3P model show that this combination is clearly less suited for the studied quadruplex with K(+) as counterions. In both simulations, one ion escapes from the channel, followed by significant deformation of the structure, leading to deviating conformation compared to that in the reference crystallographic data. For the other combinations of ion and water potentials, no tendency is observed for the channel ions to escape from the quadruplex channel. In addition, the internal mobility of the three loops, torsion angles, and counterion affinity have been investigated at varied salt concentrations. In summary, the selection of ion and water models is crucial as it can affect both the structure and dynamics as well as the interactions of the quadruplex with its counterions. The results obtained with the TIP4Pew model are found to be closest to the experimental data at all of the studied ion concentrations.
Collapse
Affiliation(s)
- Matúš Rebič
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden.,Science for Life Laboratory (SciLifelab) , 17121 Solna, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden.,Science for Life Laboratory (SciLifelab) , 17121 Solna, Sweden.,Stellenbosch Institute of Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , 7600 Stellenbosch, South Africa.,Department of Chemical and Geological Sciences, University of Cagliari , I-09042 Monserrato, Italy
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic (AVČR) , Kralovopolska 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology (CEITEC) , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Francesca Mocci
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden.,Science for Life Laboratory (SciLifelab) , 17121 Solna, Sweden.,Department of Chemical and Geological Sciences, University of Cagliari , I-09042 Monserrato, Italy
| |
Collapse
|
49
|
Dans PD, Danilāne L, Ivani I, Dršata T, Lankaš F, Hospital A, Walther J, Pujagut RI, Battistini F, Gelpí JL, Lavery R, Orozco M. Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic Acids Res 2016; 44:4052-66. [PMID: 27084952 PMCID: PMC4872116 DOI: 10.1093/nar/gkw264] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
We present a systematic study of the long-timescale dynamics of the Drew–Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na+Cl− or K+Cl−. The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.
Collapse
Affiliation(s)
- Pablo D Dans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Linda Danilāne
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain School of Chemistry, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ivan Ivani
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, 166 10 Prague, Czech Republic
| | - Filip Lankaš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, 166 10 Prague, Czech Republic Laboratory of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jürgen Walther
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ricard Illa Pujagut
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Josep Lluis Gelpí
- Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Richard Lavery
- Bases Moléculaires et Structurales des Systèmes Infectieux, Université Lyon I/CNRS UMR 5086, IBCP, 7 Passage du Vercors, Lyon 69367, France
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
50
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|