1
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
2
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Xi J, Yao L, Li S. Identification of β-conglycinin α' subunit antigenic epitopes destroyed by thermal treatments. Food Res Int 2021; 139:109806. [DOI: 10.1016/j.foodres.2020.109806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
|
4
|
High-Resolution Mapping of Human Norovirus Antigens via Genomic Phage Display Library Selections and Deep Sequencing. J Virol 2020; 95:JVI.01495-20. [PMID: 33055250 DOI: 10.1128/jvi.01495-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Norovirus (NoV) infections are a leading cause of gastroenteritis. The humoral immune response plays an important role in the control of NoV, and recent studies have identified neutralizing antibodies that bind the capsid protein VP1 to block viral infection. Here, we utilize a NoV GI.1 Jun-Fos-assisted phage display library constructed from randomly fragmented genomic DNA coupled with affinity selection for antibody binding and subsequent deep sequencing to map epitopes. The epitopes were identified by quantitating the phage clones before and after affinity selection and aligning the sequences of the most enriched peptides. The HJT-R3-A9 single-chain variable fragment (scFv) antibody epitope was mapped to a 12-amino-acid region of VP1 that is also the binding site for several previously identified monoclonal antibodies. We synthesized the 12-mer peptide and found that it binds the scFv antibody with a KD (equilibrium dissociation constant) of 46 nM. Further, alignment of enriched peptides after affinity selection on rabbit anti-NoV polyclonal antisera revealed five families of overlapping sequences that define distinct epitopes in VP1. One of these is identical to the HJT-R3-A9 scFv epitope, further suggesting that it is immunodominant. Similarly, other epitopes identified using the polyclonal antisera overlap binding sites for previously reported monoclonal antibodies, suggesting that they are also dominant epitopes. The results demonstrate that affinity selection and deep sequencing of the phage library provide sufficient resolution to map multiple epitopes simultaneously from complex samples such as polyclonal antisera. This approach can be extended to examine the antigenic landscape in patient sera to facilitate investigation of the immune response to NoV.IMPORTANCE NoV infections are a leading cause of gastroenteritis in the United States. Human NoVs exhibit extensive genetic and antigenic diversity, which makes it challenging to design a vaccine that provides broad protection against infection. Antibodies developed during the immune response play an important role in the control of NoV infections. Neutralizing antibodies that act by sterically blocking the site on the virus used to bind human cells have been identified. Identification of other antibody binding sites associated with virus neutralization is therefore of interest. Here, we use a high-resolution method to map multiple antibody binding sites simultaneously from complex serum samples. The results show that a relatively small number of sites on the virus bind a large number of independently generated antibodies, suggesting that immunodominance plays a role in the humoral immune response to NoV infections.
Collapse
|
5
|
Huang W, Soeung V, Boragine DM, Palzkill T. Mapping Protein-Protein Interaction Interface Peptides with Jun-Fos Assisted Phage Display and Deep Sequencing. ACS Synth Biol 2020; 9:1882-1896. [PMID: 32502338 DOI: 10.1021/acssynbio.0c00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions govern many cellular processes, and identifying binding interaction sites on proteins can facilitate the discovery of inhibitors to block such interactions. Here we identify peptides from a randomly fragmented plasmid encoding the β-lactamase inhibitory protein (BLIP) and the Lac repressor (LacI) that represent regions of protein-protein interactions. We utilized a Jun-Fos-assisted phage display system that has previously been used to screen cDNA and genomic libraries to identify antibody antigens. Affinity selection with polyclonal antibodies against LacI or BLIP resulted in the rapid enrichment of in-frame peptides from various regions of the proteins. Further, affinity selection with β-lactamase enriched peptides that encompass regions of BLIP previously shown to contribute strongly to the binding energy of the BLIP/β-lactamase interaction, i.e., hotspot residues. Further, one of the regions enriched by affinity selection encompassed a disulfide-constrained region of BLIP that forms part of the BLIP interaction surface in the native complex that we show also binds to β-lactamase as a disulfide-constrained macrocycle peptide with a KD of ∼1 μM. Fragmented open reading frame (ORF) libraries may efficiently identify such naturally constrained peptides at protein-protein interaction interfaces. With sufficiently deep coverage of ORFs by peptide-coding inserts, phage display and deep sequencing can provide detailed information on the domains or peptides that contribute to an interaction. Such information should enable the design of potentially therapeutic macrocycles or peptidomimetics that block the interaction.
Collapse
|
6
|
Ligandomics: a paradigm shift in biological drug discovery. Drug Discov Today 2018; 23:636-643. [PMID: 29326083 DOI: 10.1016/j.drudis.2018.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
As productivity of pharmaceutical research and development (R&D) for small-molecule drugs declines, the trend in drug discovery strategies is shifting towards biologics, which predominantly target secreted or cell surface proteins. Receptors and ligands are the most-valuable drug targets. In contrast to conventional approaches of discovering one ligand at a time, the emerging technology of ligandomics can systematically map disease-selective cellular ligands in the absence of molecular probes. Biologics targeting these ligands with disease selectivity have the advantages of high efficacy, minimal adverse effects, wide therapeutic indices, and low safety-related attrition rates. Therefore, ligandomics represents a paradigm shift to address the bottleneck of target discovery for biologics development.
Collapse
|
7
|
LeBlanc ME, Wang W, Chen X, Caberoy NB, Guo F, Shen C, Ji Y, Tian H, Wang H, Chen R, Li W. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med 2017; 214:1029-1047. [PMID: 28330905 PMCID: PMC5379984 DOI: 10.1084/jem.20161802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/23/2016] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
LeBlanc et al. uncover secretogranin III (Scg3) as a unique disease-associated vascular permeability and angiogenic factor using comparative ligandomics. Scg3-neutralizing antibodies alleviate vascular leakage in diabetic retinopathy mice and retinal neovascularization in oxygen-induced retinopathy mice with high efficacy. Diabetic retinopathy (DR) is a leading cause of vision loss with retinal vascular leakage and/or neovascularization. Current antiangiogenic therapy against vascular endothelial growth factor (VEGF) has limited efficacy. In this study, we applied a new technology of comparative ligandomics to diabetic and control mice for the differential mapping of disease-related endothelial ligands. Secretogranin III (Scg3) was discovered as a novel disease-associated ligand with selective binding and angiogenic activity in diabetic but not healthy vessels. In contrast, VEGF bound to and induced angiogenesis in both diabetic and normal vasculature. Scg3 and VEGF signal through distinct receptor pathways. Importantly, Scg3-neutralizing antibodies alleviated retinal vascular leakage in diabetic mice with high efficacy. Furthermore, anti-Scg3 prevented retinal neovascularization in oxygen-induced retinopathy mice, a surrogate model for retinopathy of prematurity (ROP). ROP is the most common cause of vision impairment in children, with no approved drug therapy. These results suggest that Scg3 is a promising target for novel antiangiogenic therapy of DR and ROP.
Collapse
Affiliation(s)
- Michelle E LeBlanc
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Weiwen Wang
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Xiuping Chen
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136.,Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Nora B Caberoy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154
| | - Feiye Guo
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Chen Shen
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Yanli Ji
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136.,Department of Ophthalmology, Zhengzhou Eye Hospital, Zhengzhou 450000, Henan, China
| | - Hong Tian
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.,Everglades Biopharma, Miami, FL 33156
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Wei Li
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136 .,Vascular Biology Institute, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
8
|
LeBlanc ME, Wang W, Caberoy NB, Chen X, Guo F, Alvarado G, Shen C, Wang F, Wang H, Chen R, Liu ZJ, Webster K, Li W. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor. PLoS One 2015; 10:e0127904. [PMID: 25996149 PMCID: PMC4440747 DOI: 10.1371/journal.pone.0127904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/23/2022] Open
Abstract
Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3) was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs). HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2) pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.
Collapse
Affiliation(s)
- Michelle E. LeBlanc
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Weiwen Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Nora B. Caberoy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Xiuping Chen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Feiye Guo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Gabriela Alvarado
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Chen Shen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Feng Wang
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Wang
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhao-Jun Liu
- Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Keith Webster
- Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States of America
- Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ding Y, Caberoy NB, Guo F, LeBlanc ME, Zhang C, Wang W, Wang F, Chen R, Li W. Reticulocalbin-1 facilitates microglial phagocytosis. PLoS One 2015; 10:e0126993. [PMID: 25992960 PMCID: PMC4436338 DOI: 10.1371/journal.pone.0126993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes.
Collapse
Affiliation(s)
- Ying Ding
- Bascom Palmer Eye Institute, Dept. of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136, United States of America
| | - Nora B. Caberoy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, United States of America
| | - Feiye Guo
- Bascom Palmer Eye Institute, Dept. of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136, United States of America
| | - Michelle E. LeBlanc
- Bascom Palmer Eye Institute, Dept. of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136, United States of America
| | - Chenming Zhang
- Bascom Palmer Eye Institute, Dept. of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136, United States of America
- Jinan 2 People’s Hospital, Jinan, 250001, China
| | - Weiwen Wang
- Bascom Palmer Eye Institute, Dept. of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136, United States of America
| | - Feng Wang
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Rui Chen
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Wei Li
- Bascom Palmer Eye Institute, Dept. of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136, United States of America
- Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, United States of America
- * E-mail:
| |
Collapse
|
10
|
Guo F, Ding Y, Caberoy N, Alvarado G, Wang F, Chen R, Li W. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis. Mol Biol Cell 2015; 26:2311-20. [PMID: 25904329 PMCID: PMC4462947 DOI: 10.1091/mbc.e14-09-1343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/14/2015] [Indexed: 12/24/2022] Open
Abstract
Intracellular ABCF1 is identified and characterized as a new ligand to extrinsically stimulate retinal pigment epithelial cell phagocytosis. A new approach developed in this study is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to broaden understanding of extrinsic regulation and cargo recognition. Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition.
Collapse
Affiliation(s)
- Feiye Guo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| | - Ying Ding
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| | - Nora Caberoy
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Gabriela Alvarado
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
11
|
Guo F, Ding Y, Caberoy NB, Alvarado G, Liu R, Shen C, Yu J, Zhou Y, Salero E, LeBlanc ME, Wang W, Li W. Lyar Is a New Ligand for Retinal Pigment Epithelial Phagocytosis. J Cell Biochem 2015; 116:2177-87. [PMID: 25735755 DOI: 10.1002/jcb.25089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
Abstract
Phagocytosis is critical to tissue homeostasis, as highlighted by phagocytosis defect of retinal pigment epithelial (RPE) cells with debris accumulation, photoreceptor degeneration and blindness. Phagocytosis ligands are the key to delineating molecular mechanisms and functional roles of phagocytes, but are traditionally identified in individual cases with technical challenges. We recently developed open reading frame phage display (OPD) for phagocytosis-based functional cloning (PFC) to identify unknown ligands. One of the identified ligands was Ly-1 antibody reactive clone (Lyar) with functions poorly defined. Herein, we characterized Lyar as a new ligand to stimulate RPE phagocytosis. In contrast to its reported nucleolar expression, immunohistochemistry showed that Lyar was highly expressed in photoreceptor outer segments (POSs) of the retina. Cytoplasmic Lyar was released from apoptotic cells, and selectively bound to shed POSs and apoptotic cells, but not healthy cells. POS vesicles engulfed through Lyar-dependent pathway were targeted to phagosomes and colocalized with phagosome marker Rab7. These results suggest that Lyar is a genuine RPE phagocytosis ligand, which in turn supports the validity of OPD/PFC as the only available approach for unbiased identification of phagocytosis ligands with broad applicability to various phagocytes.
Collapse
Affiliation(s)
- Feiye Guo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Ying Ding
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Nora B Caberoy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| | - Gabriela Alvarado
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Robert Liu
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Chen Shen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Jisu Yu
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011, Shanghai, China
| | - Enrique Salero
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Michelle E LeBlanc
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Weiwen Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| |
Collapse
|
12
|
Addepalli B, Rao S, Hunt AG. Phage display library screening for identification of interacting protein partners. Methods Mol Biol 2015; 1255:147-158. [PMID: 25487211 DOI: 10.1007/978-1-4939-2175-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phage display is a versatile high-throughput screening method employed to understand and improve the chemical biology, be it production of human monoclonal antibodies or identification of interacting protein partners. A majority of cell proteins operate in a concerted fashion either by stable or transient interactions. Such interactions can be mediated by recognition of small amino acid sequence motifs on the protein surface. Phage display can play a crucial role in identification of such motifs. This report describes the use of phage display for the identification of high affinity sequence motifs that could be responsible for interactions with a target (bait) protein.
Collapse
Affiliation(s)
- Balasubrahmanyam Addepalli
- Rieveschl laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 312 College Dr, Cincinnati, OH, 45221, USA,
| | | | | |
Collapse
|
13
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|
14
|
Kushwaha R, Schäfermeyer KR, Downie AB. A protocol for phage display and affinity selection using recombinant protein baits. J Vis Exp 2014:e50685. [PMID: 24637694 DOI: 10.3791/50685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Using recombinant phage as a scaffold to present various protein portions encoded by a directionally cloned cDNA library to immobilized bait molecules is an efficient means to discover interactions. The technique has largely been used to discover protein-protein interactions but the bait molecule to be challenged need not be restricted to proteins. The protocol presented here has been optimized to allow a modest number of baits to be screened in replicates to maximize the identification of independent clones presenting the same protein. This permits greater confidence that interacting proteins identified are legitimate interactors of the bait molecule. Monitoring the phage titer after each affinity selection round provides information on how the affinity selection is progressing as well as on the efficacy of negative controls. One means of titering the phage, and how and what to prepare in advance to allow this process to progress as efficiently as possible, is presented. Attributes of amplicons retrieved following isolation of independent plaque are highlighted that can be used to ascertain how well the affinity selection has progressed. Trouble shooting techniques to minimize false positives or to bypass persistently recovered phage are explained. Means of reducing viral contamination flare up are discussed.
Collapse
|
15
|
Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev 2013; 12:1005-12. [PMID: 23748186 DOI: 10.1016/j.arr.2013.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration.
Collapse
|
16
|
D'Angelo S, Mignone F, Deantonio C, Di Niro R, Bordoni R, Marzari R, De Bellis G, Not T, Ferrara F, Bradbury A, Santoro C, Sblattero D. Profiling celiac disease antibody repertoire. Clin Immunol 2013; 148:99-109. [DOI: 10.1016/j.clim.2013.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023]
|