1
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2025; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
2
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
3
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
5
|
Payne K, Brooks J, Batis N, Taylor G, Nankivell P, Mehanna H. Characterizing the epithelial-mesenchymal transition status of circulating tumor cells in head and neck squamous cell carcinoma. Head Neck 2022; 44:2545-2554. [PMID: 35932094 PMCID: PMC9804280 DOI: 10.1002/hed.27167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs), in particular those undergoing an epithelial-mesenchymal transition (EMT), are a promising source of biomarkers in head and neck squamous cell carcinoma (HNSCC). Our aim was to validate a protocol using microfluidic enrichment (Parsortix platform) with flow-cytometry CTC characterization. METHOD Blood samples from 20 treatment naïve HNSCC patients underwent Parsortix enrichment and flow cytometry analysis to quantify CTCs and identify epithelial or EMT subgroups-correlated to clinical outcomes and EMT gene-expression in tumor tissue. RESULTS CTCs were detected in 65% of patients (mean count 4 CTCs/ml). CTCs correlated with advanced disease (p = 0.0121), but not T or N classification. Epithelial or EMT CTCs did not correlate with progression-free or overall survival. Tumor mesenchymal gene-expression did not correlate with CTC EMT expression (p = 0.347). DISCUSSION Microfluidic enrichment and flow cytometry successfully characterizes EMT CTCs in HNSCC. The lack of association between tumor and CTC EMT profile suggests CTCs may undergo an adaptive EMT in response to stimuli within the circulation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Graham Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
6
|
Hu X, Zang X, Lv Y. Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett 2021; 21:422. [PMID: 33850563 PMCID: PMC8025150 DOI: 10.3892/ol.2021.12683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the main cause of cancer-related death and the major challenge in cancer treatment. Cancer cells in circulation are termed circulating tumor cells (CTCs). Primary tumor metastasis is likely due to CTCs released into the bloodstream. These CTCs extravasate and form fatal metastases in different organs. Analyses of CTCs are clarifying the biological understanding of metastatic cancers. These data are also helpful to monitor disease progression and to inform the development of personalized cancer treatment-based liquid biopsy. However, CTCs are a rare cell population with 1-10 CTCs per ml and are difficult to isolate from blood. Numerous approaches to detect CTCs have been developed based on the physical and biological properties of the cells. The present review summarizes the progress made in detecting CTCs.
Collapse
Affiliation(s)
- Xiuxiu Hu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu 22300, P.R. China
| | - Xiaojuan Zang
- Department of Ultrasonography, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanguan Lv
- Clinical Medical Laboratory, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
7
|
Lopresti A, Malergue F, Bertucci F, Liberatoscioli ML, Garnier S, DaCosta Q, Finetti P, Gilabert M, Raoul JL, Birnbaum D, Acquaviva C, Mamessier E. Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight 2019; 5:128180. [PMID: 31194699 DOI: 10.1172/jci.insight.128180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circulating Tumor Cells (CTCs) represent an easy, repeatable and representative access to information regarding solid tumors. However, their detection remains difficult because of their paucity, their short half-life, and the lack of reliable surface biomarkers. Flow cytometry (FC) is a fast, sensitive and affordable technique, ideal for rare cells detection. Adapted to CTCs detection (i.e. extremely rare cells), most FC-based techniques require a time-consuming pre-enrichment step, followed by a 2-hours staining procedure, impeding on the efficiency of CTCs detection. We overcame these caveats and reduced the procedure to less than one hour, with minimal manipulation. First, cells were simultaneously fixed, permeabilized, then stained. Second, using low-speed FC acquisition conditions and two discriminators (cell size and pan-cytokeratin expression), we suppressed the pre-enrichment step. Applied to blood from donors with or without known malignant diseases, this protocol ensures a high recovery of the cells of interest independently of their epithelial-mesenchymal plasticity and can predict which samples are derived from cancer donors. This proof-of-concept study lays the bases of a sensitive tool to detect CTCs from a small amount of blood upstream of in-depth analyses.
Collapse
Affiliation(s)
- Alexia Lopresti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Fabrice Malergue
- Research, Beckman Coulter Life Sciences, Marseille, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France.,Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Maria Lucia Liberatoscioli
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Severine Garnier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Quentin DaCosta
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Marine Gilabert
- Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean Luc Raoul
- Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Claire Acquaviva
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| |
Collapse
|
8
|
Aljaghtham MS, Liu ZL, Guo JJ, He J, Celik E. Numerical simulations of cell flow and trapping within microfluidic channels for stiffness based cell isolation. J Biomech 2019; 85:43-49. [PMID: 30655079 DOI: 10.1016/j.jbiomech.2019.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/10/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022]
Abstract
Analysis of rare cells in heterogenous mixtures is proven to be beneficial for regenerative medicine, cancer treatment and prenatal diagnostics. Scarcity of these cells, however, makes the isolation process extremely challenging. Efficiency in cell isolation is still low and therefore, novel cell isolation strategies with new biomarkers need exploration. In this study, we investigated the feasibility of using the mechanical stiffness difference to detect and isolate the rare cells from the surrounding cells without labelling them. Fluid and solid mechanics simulations have shown that cell isolation can be performed at high efficiency using stiffness-based isolation. Accuracy of the numerical simulations is established using microfluidic flow chamber experiments.
Collapse
Affiliation(s)
- Mutabe S Aljaghtham
- Department of Mechanical and Aerospace Engineering, University of Miami, USA
| | - Zixiang L Liu
- Department Mechanical Engineering, Georgia Institute of Technology, USA
| | - Jing J Guo
- Department of Physics, Florida International University, USA
| | - Jin He
- Department of Physics, Florida International University, USA
| | - Emrah Celik
- Department of Mechanical and Aerospace Engineering, University of Miami, USA.
| |
Collapse
|
9
|
Lang JE, Ring A, Porras T, Kaur P, Forte VA, Mineyev N, Tripathy D, Press MF, Campo D. RNA-Seq of Circulating Tumor Cells in Stage II-III Breast Cancer. Ann Surg Oncol 2018; 25:2261-2270. [PMID: 29868978 DOI: 10.1245/s10434-018-6540-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND We characterized the whole transcriptome of circulating tumor cells (CTCs) in stage II-III breast cancer to evaluate correlations with primary tumor biology. METHODS CTCs were isolated from peripheral blood (PB) via immunomagnetic enrichment followed by fluorescence-activated cell sorting (IE/FACS). CTCs, PB, and fresh tumors were profiled using RNA-seq. Formalin-fixed, paraffin-embedded (FFPE) tumors were subjected to RNA-seq and NanoString PAM50 assays with risk of recurrence (ROR) scores. RESULTS CTCs were detected in 29/33 (88%) patients. We selected 21 cases to attempt RNA-seq (median number of CTCs = 9). Sixteen CTC samples yielded results that passed quality-control metrics, and these samples had a median of 4,311,255 uniquely mapped reads (less than PB or tumors). Intrinsic subtype predicted by comparing estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) versus PAM50 for FFPE tumors was 85% concordant. However, CTC RNA-seq subtype assessed by the PAM50 classification genes was highly discordant, both with the subtype predicted by ER/PR/HER2 and by PAM50 tumors. Two patients died of metastatic disease, both of whom had high ROR scores and high CTC counts. We identified significant genes, canonical pathways, upstream regulators, and molecular interaction networks comparing CTCs by various clinical factors. We also identified a 75-gene signature with highest expression in CTCs and tumors taken together that was prognostic in The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium datasets. CONCLUSION It is feasible to use RNA-seq of CTCs in non-metastatic patients to discover novel tumor biology characteristics.
Collapse
Affiliation(s)
- Julie E Lang
- Section of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA.
| | - Alexander Ring
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Tania Porras
- Section of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Pushpinder Kaur
- Section of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Victoria A Forte
- Division of Medical Oncology, Department of Medicine, Maimonides Medical Center, New York, NY, USA
| | - Neal Mineyev
- Section of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Michael F Press
- Department of Pathology and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Daniel Campo
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14231-14247. [PMID: 29557165 DOI: 10.1021/acsami.7b17896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The circulation of tumor cells in peripheral blood is mostly recognized as a prerequisite for cancer progression or systemic invasion, and it correlates with the pivotal hallmark of malignancies known as metastasis. Multiple detection schemes for circulating tumor cells (CTCs) have emerged as the most discerning criteria for monitoring the outcome of anticancer therapy. Therefore, there has been a tremendous increase in the use of robust nanostructured platforms for observation of these mobile tumor cells through various simultaneous diagnosis and treatment regimens developed from conventional techniques. This review seeks to give detailed information about the nature of CTCs as well as techniques for exploiting specific biomarkers to help monitor cancer via detection, capturing, and analysis of unstable tumor cells. We will further discuss nanobased diagnostic interventions and novel platforms which have recently been developed from versatile nanomaterials such as polymer nanocomposites, metal organic frameworks, bioderived nanomaterials and other physically responsive particles with desirable intrinsic and external properties. Herein, we will also include in vivo nanotheranostic platforms which have received a lot of attention because of their enormous clinical potential. In all, this review sums up the general potential of key promising nanoinspired systems as well as other advanced strategies under research and those in clinical use.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology , The University of Queensland , St. Lucia , Brisbane, QLD 4072
| | - Assogba G Assanhou
- UFR Pharmacie, Falculté des Sciences de la Santé , Université d'Abomey-Calavi , 01BP188 Cotonou , Benin
| | | | | | | | | |
Collapse
|
11
|
Wang Y, Guo L, Feng L, Zhang W, Xiao T, Di X, Chen G, Zhang K. Single nucleotide variant profiles of viable single circulating tumour cells reveal CTC behaviours in breast cancer. Oncol Rep 2018; 39:2147-2159. [PMID: 29565466 PMCID: PMC5928770 DOI: 10.3892/or.2018.6325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
Circulating tumour cell (CTC) behaviours are distinct from those of bulk tissues. Thus, treatments to eliminate CTCs differ from the regimens followed to reduce the primary tumour and its metastases. Accordingly, comprehensively deciphering the single nucleotide variant (SNV) profiles in CTCs, which partially determine CTC behaviours, is a priority. Using viable CTCs isolated with the oHSV1-hTERT-GFP virus coupled with fluorescence-activated cell sorting (FACS), the whole genome was amplified using the multiple annealing and looping-based amplification cycle (MALBAC) method. CTC behaviours were evaluated using the SNVs found to be recurrently mutated in different cells (termed CTC-shared SNVs). Analysis of the sequencing data of 11 CTCs from 8 patients demonstrated that SNVs accumulated sporadically among CTCs and their matched primary tumours (22 co-occurring mutated genes were identified in the exomes of CTCs and their matched primary tissues and metastases), and 394 SNVs were shared by at least two CTCs. Mutated APC and LRP1B genes co-occurred in CTC-shared and bulk-tissue SNVs. Additionally, the breast-originating identity of the CTC-shared SNVs was verified, and they demonstrated the following CTC behaviours: i) intravasation competency; ii) increased migration or motility; iii) enhanced cell-cell interactions; iv) variation in energy metabolism; v) an activated platelet or coagulation system; and vi) dysfunctional mitosis. These results demonstrated that it is feasible to capture and amplify the genomes of single CTCs using the described pipeline. CTC-shared SNVs are a potential signature for identifying the origin of the primary tumour in a liquid biopsy. Furthermore, CTCs demonstrated some behaviours that are unique from those of bulk tissues. Therefore, therapies to eradicate these precursors of metastasis may differ from the existing traditional regimens.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Breast Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liping Guo
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guoji Chen
- Department of Breast Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
12
|
Magbanua MJM, Rugo HS, Wolf DM, Hauranieh L, Roy R, Pendyala P, Sosa EV, Scott JH, Lee JS, Pitcher B, Hyslop T, Barry WT, Isakoff SJ, Dickler M, Van't Veer L, Park JW. Expanded Genomic Profiling of Circulating Tumor Cells in Metastatic Breast Cancer Patients to Assess Biomarker Status and Biology Over Time (CALGB 40502 and CALGB 40503, Alliance). Clin Cancer Res 2018; 24:1486-1499. [PMID: 29311117 PMCID: PMC5856614 DOI: 10.1158/1078-0432.ccr-17-2312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/18/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
Abstract
Purpose: We profiled circulating tumor cells (CTCs) to study the biology of blood-borne metastasis and to monitor biomarker status in metastatic breast cancer (MBC).Methods: CTCs were isolated from 105 patients with MBC using EPCAM-based immunomagnetic enrichment and fluorescence-activated cells sorting (IE/FACS), 28 of whom had serial CTC analysis (74 samples, 2-5 time points). CTCs were subjected to microfluidic-based multiplex QPCR array of 64 cancer-related genes (n = 151) and genome-wide copy-number analysis by array comparative genomic hybridization (aCGH; n = 49).Results: Combined transcriptional and genomic profiling showed that CTCs were 26% ESR1-ERBB2-, 48% ESR1+ERBB2-, and 27% ERBB2+ Serial testing showed that ERBB2 status was more stable over time compared with ESR1 and proliferation (MKI67) status. While cell-to-cell heterogeneity was observed at the single-cell level, with increasingly stable expression in larger pools, patient-specific CTC expression "fingerprints" were also observed. CTC copy-number profiles clustered into three groups based on the extent of genomic aberrations and the presence of large chromosomal imbalances. Comparative analysis showed discordance in ESR1/ER (27%) and ERBB2/HER2 (23%) status between CTCs and matched primary tumors. CTCs in 65% of the patients were considered to have low proliferation potential. Patients who harbored CTCs with high proliferation (MKI67) status had significantly reduced progression-free survival (P = 0.0011) and overall survival (P = 0.0095) compared with patients with low proliferative CTCs.Conclusions: We demonstrate an approach for complete isolation of EPCAM-positive CTCs and downstream comprehensive transcriptional/genomic characterization to examine the biology and assess breast cancer biomarkers in these cells over time. Clin Cancer Res; 24(6); 1486-99. ©2018 AACR.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California.
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Louai Hauranieh
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center and Computational Biology and Informatics, University of California at San Francisco, San Francisco, California
| | - Praveen Pendyala
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Eduardo V Sosa
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Janet H Scott
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Jin Sun Lee
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Brandelyn Pitcher
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Terry Hyslop
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - William T Barry
- Alliance Statistics and Data Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Maura Dickler
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Van't Veer
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - John W Park
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California.
| |
Collapse
|
13
|
Abstract
The majority of cancer-related deaths result from metastasis, the process by which cancer cells escape the primary tumor site and enter into the blood circulation in order to disseminate to secondary locations throughout the body. Tumor cells found within the circulation are referred to as circulating tumor cells (CTCs), and their detection and enumeration correlate with poor prognosis. The epithelial-to-mesenchymal transition (EMT) is a dynamic process that imparts epithelial cells with mesenchymal-like properties, thus facilitating tumor cell dissemination and contributing to metastasis. However, EMT also results in the downregulation of various epithelial proteins typically utilized by CTC technologies for enrichment and detection of these rare cells, resulting in reduced detection of some CTCs, potentially those with a more metastatic phenotype. In addition to the current clinical role of CTCs as a prognostic biomarker, they also have potential as a predictive biomarker via CTC characterization. However, CTC characterization is complicated by the unknown biological significance of CTCs possessing an EMT-like phenotype, and the ability to capture and understand this CTC subpopulation is an essential step in the utilization of CTCs for patient management. This chapter will review the process of EMT and its contribution to metastasis; discusses current and future clinical applications of CTCs; and describes both traditional and novel methods for CTC enrichment, detection, and characterization with a specific focus on CTCs with an EMT phenotype.
Collapse
|
14
|
Gulbahce N, Magbanua MJM, Chin R, Agarwal MR, Luo X, Liu J, Hayden DM, Mao Q, Ciotlos S, Li Z, Chen Y, Chen X, Li Y, Zhang RY, Lee K, Tearle R, Park E, Drmanac S, Rugo HS, Park JW, Drmanac R, Peters BA. Quantitative Whole Genome Sequencing of Circulating Tumor Cells Enables Personalized Combination Therapy of Metastatic Cancer. Cancer Res 2017; 77:4530-4541. [PMID: 28811315 DOI: 10.1158/0008-5472.can-17-0688] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Much effort has been dedicated to developing circulating tumor cells (CTC) as a noninvasive cancer biopsy, but with limited success as yet. In this study, we combine a method for isolation of highly pure CTCs using immunomagnetic enrichment/fluorescence-activated cell sorting with advanced whole genome sequencing (WGS), based on long fragment read technology, to illustrate the utility of an accurate, comprehensive, phased, and quantitative genomic analysis platform for CTCs. Whole genomes of 34 CTCs from a patient with metastatic breast cancer were analyzed as 3,072 barcoded subgenomic compartments of long DNA. WGS resulted in a read coverage of 23× per cell and an ensemble call rate of >95%. These barcoded reads enabled accurate detection of somatic mutations present in as few as 12% of CTCs. We found in CTCs a total of 2,766 somatic single-nucleotide variants and 543 indels and multi-base substitutions, 23 of which altered amino acid sequences. Another 16,961 somatic single nucleotide variant and 8,408 indels and multi-base substitutions, 77 of which were nonsynonymous, were detected with varying degrees of prevalence across the 34 CTCs. On the basis of our whole genome data of mutations found in all CTCs, we identified driver mutations and the tissue of origin of these cells, suggesting personalized combination therapies beyond the scope of most gene panels. Taken together, our results show how advanced WGS of CTCs can lead to high-resolution analyses of cancers that can reliably guide personalized therapy. Cancer Res; 77(16); 4530-41. ©2017 AACR.
Collapse
Affiliation(s)
| | - Mark Jesus M Magbanua
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robert Chin
- Complete Genomics, Inc, San Jose, California
| | | | - Xuhao Luo
- Complete Genomics, Inc, San Jose, California
| | - Jia Liu
- Complete Genomics, Inc, San Jose, California
| | | | - Qing Mao
- Complete Genomics, Inc, San Jose, California
| | | | | | | | | | | | | | | | - Rick Tearle
- Complete Genomics, Inc, San Jose, California
| | - Emily Park
- Advanced Cell Diagnostics, Inc, Hayward, California
| | - Snezana Drmanac
- Complete Genomics, Inc, San Jose, California.,BGI-Shenzhen, Shenzhen, China
| | - Hope S Rugo
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - John W Park
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Radoje Drmanac
- Complete Genomics, Inc, San Jose, California. .,BGI-Shenzhen, Shenzhen, China
| | - Brock A Peters
- Complete Genomics, Inc, San Jose, California. .,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
15
|
Magbanua MJM, Solanki TI, Ordonez AD, Hsiao F, Park JW. Enumeration of Circulating Tumor Cells and Disseminated Tumor Cells in Blood and Bone Marrow by Immunomagnetic Enrichment and Flow Cytometry (IE/FC). Methods Mol Biol 2017; 1634:203-210. [PMID: 28819853 DOI: 10.1007/978-1-4939-7144-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Enumerating circulating tumor cells (CTCs) in blood and disseminated tumor cells (DTCs) in bone marrow has shown to be clinically useful, as elevated numbers of these cells predict poor clinical outcomes. Accurate detection and quantification is, however, difficult and technically challenging because CTCs and DTCs are extremely rare. We have developed a novel quantitative detection method for enumeration of CTCs and DTCs. Our approach consists of two steps: (1) EPCAM-based immunomagnetic enrichment followed by (2) flow cytometry (IE/FC). The assay takes approximately 2 h to complete. In addition to tumor cell enumeration, IE/FC offers opportunities for direct isolation of highly pure tumor cells for downstream molecular characterization.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- Division of Hematology Oncology, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, Box 1387, 2340 Sutter St., S471, San Francisco, CA, 94115, USA.
| | - Tulasi I Solanki
- Division of Hematology Oncology, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, Box 1387, 2340 Sutter St., S471, San Francisco, CA, 94115, USA
| | - Andrea D Ordonez
- Division of Hematology Oncology, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, Box 1387, 2340 Sutter St., S471, San Francisco, CA, 94115, USA
| | - Feng Hsiao
- Division of Hematology Oncology, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, Box 1387, 2340 Sutter St., S471, San Francisco, CA, 94115, USA
| | - John W Park
- Division of Hematology Oncology, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, Box 1387, 2340 Sutter St., S471, San Francisco, CA, 94115, USA
| |
Collapse
|
16
|
Strategies for Isolation and Molecular Profiling of Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:43-66. [PMID: 28560667 DOI: 10.1007/978-3-319-55947-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death by disease worldwide, and metastasis is responsible for more than 90% of the mortality of cancer patients. Metastasis occurs when tumor cells leave the primary tumor, travel through the blood stream as circulating tumor cells (CTCs), and then colonize secondary tumors at sites distant from the primary tumor. The capture, identification, and analysis of CTCs offer both scientific and clinical benefits. On the scientific side, the analysis of CTCs could help elucidate possible genetic alterations and signaling pathway aberrations during cancer progression, which could then be used to find new methods to stop cancer progression. On the clinical side, non-invasive testing of a patient's blood for CTCs can be used for patient diagnosis and prognosis, as well as subsequent monitoring of treatment efficacy in routine clinical practice. Additionally, investigation of CTCs early in the progression of cancer may reveal targets for initial cancer detection and for anti-cancer treatment. This chapter will evaluate strategies and devices used for the isolation and identification of CTCs directly from clinical samples of blood. Recent progress in the understanding of the significance of both single CTCs and circulating tumor microemboli will be discussed. Also, advancements in the use of CTC-based liquid biopsy in clinical diagnosis and the potential of CTC-based molecular characterization for use in clinical applications will be summarized.
Collapse
|
17
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
18
|
EpCAM based capture detects and recovers circulating tumor cells from all subtypes of breast cancer except claudin-low. Oncotarget 2016; 6:44623-34. [PMID: 26556851 PMCID: PMC4792580 DOI: 10.18632/oncotarget.5977] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023] Open
Abstract
Purpose The potential utility of circulating tumor cells (CTCs) as liquid biopsies is of great interest. We hypothesized that CTC capture using EpCAM based gating is feasible for most breast cancer subtypes. Results Cancer cells could be recovered from all intrinsic subtypes of breast cancer with IE/FACS, however, claudin-low cell lines showed very low capture rates compared to the four other groups (p = 0.03). IE/FACS detection of CTC mimic cells was time sensitive, emphasizing controlling for pre-analytic variables in CTC studies. Median fluorescent intensity for flow cytometry and RNA flow cell type characterization were highly correlated, predicting for CTC isolation across molecular subtypes. RNA-Seq of IE/FACS sorted single cell equivalents showed high correlation compared to bulk cell lines, and distinct gene expression signatures compared to PB. Materials and Methods Ten cell lines representing all major subtypes of breast cancer were spiked (as CTC mimics) into and recovered from peripheral blood (PB) using immunomagnetic enrichment followed by fluorescence-activated cell sorting (IE/FACS). Flow cytometry and RNA flow were used to quantify the expression of multiple breast cancer related markers of interest. Two different RNA-Seq technologies were used to analyze global gene expression of recovered sorted cells compared to bulk cell lines and PB. Conclusions EpCAM based IE/FACS detected and captured a portion of spiked cells from each of the 10 cell lines representing all breast cancer subtypes, including basal-like but not claudin-low cancers. The assay allows for the isolation of high quality RNA suitable for accurate RNA-Seq of heterogeneous rare cell populations.
Collapse
|
19
|
Lee JS, Magbanua MJM, Park JW. Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat 2016; 160:411-424. [DOI: 10.1007/s10549-016-4014-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
|
20
|
Karagiannis GS, Goswami S, Jones JG, Oktay MH, Condeelis JS. Signatures of breast cancer metastasis at a glance. J Cell Sci 2016; 129:1751-8. [PMID: 27084578 DOI: 10.1242/jcs.183129] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene expression profiling has yielded expression signatures from which prognostic tests can be derived to facilitate clinical decision making in breast cancer patients. Some of these signatures are based on profiling of whole tumor tissue (tissue signatures), which includes all tumor and stromal cells. Prognostic markers have also been derived from the profiling of metastasizing tumor cells, including circulating tumor cells (CTCs) and migratory-disseminating tumor cells within the primary tumor. The metastasis signatures based on CTCs and migratory-disseminating tumor cells have greater potential for unraveling cell biology insights and mechanistic underpinnings of tumor cell dissemination and metastasis. Of clinical interest is the promise that stratification of patients into high or low metastatic risk, as well as assessing the need for cytotoxic therapy, might be improved if prognostics derived from these two types of signatures are used in a combined way. The aim of this Cell Science at a Glance article and accompanying poster is to navigate through both types of signatures and their derived prognostics, as well as to highlight biological insights and clinical applications that could be derived from them, especially when they are used in combination.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
21
|
Continuous sorting and washing of cancer cells from blood cells by hydrophoresis. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-016-0201-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Lee JS, Melisko ME, Magbanua MJM, Kablanian AT, Scott JH, Rugo HS, Park JW. Detection of cerebrospinal fluid tumor cells and its clinical relevance in leptomeningeal metastasis of breast cancer. Breast Cancer Res Treat 2015; 154:339-49. [DOI: 10.1007/s10549-015-3610-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
|
23
|
Magbanua MJM, Pugia M, Lee JS, Jabon M, Wang V, Gubens M, Marfurt K, Pence J, Sidhu H, Uzgiris A, Rugo HS, Park JW. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay. PLoS One 2015; 10:e0141166. [PMID: 26496203 PMCID: PMC4619669 DOI: 10.1371/journal.pone.0141166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/04/2015] [Indexed: 12/15/2022] Open
Abstract
Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.
Collapse
Affiliation(s)
- Mark Jesus M. Magbanua
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
- * E-mail: ,
| | - Michael Pugia
- Siemens Healthcare Diagnostics, Elkhart, IN, 46516, United States of America
| | - Jin Sun Lee
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Marc Jabon
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Victoria Wang
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Matthew Gubens
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Karen Marfurt
- Siemens Healthcare Diagnostics, Elkhart, IN, 46516, United States of America
| | - Julia Pence
- Siemens Healthcare Diagnostics, Elkhart, IN, 46516, United States of America
| | - Harwinder Sidhu
- Siemens Healthcare Diagnostics, Elkhart, IN, 46516, United States of America
| | - Arejas Uzgiris
- Siemens Healthcare Diagnostics, Elkhart, IN, 46516, United States of America
| | - Hope S. Rugo
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - John W. Park
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
- * E-mail: ,
| |
Collapse
|
24
|
Kelley RK, Magbanua MJM, Butler TM, Collisson EA, Hwang J, Sidiropoulos N, Evason K, McWhirter RM, Hameed B, Wayne EM, Yao FY, Venook AP, Park JW. Circulating tumor cells in hepatocellular carcinoma: a pilot study of detection, enumeration, and next-generation sequencing in cases and controls. BMC Cancer 2015; 15:206. [PMID: 25884197 PMCID: PMC4399150 DOI: 10.1186/s12885-015-1195-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Circulating biomarkers are urgently needed in hepatocellular carcinoma (HCC). The aims of this study were to determine the feasibility of detecting and isolating circulating tumor cells (CTCs) in HCC patients using enrichment for epithelial cell adhesion molecule (EpCAM) expression, to examine their prognostic value, and to explore CTC-based DNA sequencing in metastatic HCC patients compared to a control cohort with non-malignant liver diseases (NMLD). Methods Whole blood was obtained from patients with metastatic HCC or NMLD. CTCs were enumerated by CellSearch then purified by immunomagnetic EpCAM enrichment and fluorescence-activated cell sorting. Targeted ion semiconductor sequencing was performed on whole genome-amplified DNA from CTCs, tumor specimens, and peripheral blood mononuclear cells (PBMC) when available. Results Twenty HCC and 10 NMLD patients enrolled. CTCs ≥ 2/7.5 mL were detected in 7/20 (35%, 95% confidence interval: 12%, 60%) HCC and 0/9 eligible NMLD (p = 0.04). CTCs ≥ 1/7.5 mL was associated with alpha-fetoprotein ≥ 400 ng/mL (p = 0.008) and vascular invasion (p = 0.009). Sequencing of CTC DNA identified characteristic HCC mutations. The proportion with ≥ 100x coverage depth was lower in CTCs (43%) than tumor or PBMC (87%) (p < 0.025). Low frequency variants were higher in CTCs (p < 0.001). Conclusions CTCs are detectable by EpCAM enrichment in metastatic HCC, without confounding false positive background from NMLD. CTC detection was associated with poor prognostic factors. Sequencing of CTC DNA identified known HCC mutations but more low-frequency variants and lower coverage depth than FFPE or PBMC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1195-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin K Kelley
- Helen Diller Family Comprehensive Cancer Center and The Liver Center, University of California San Francisco (UCSF), 550 16th St., Box 3211, San Francisco, CA, 94143, USA.
| | - Mark Jesus M Magbanua
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | - Timothy M Butler
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Mail Code #L103, Portland, OR, 97239, USA.
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | - Jimmy Hwang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | | | - Kimberley Evason
- Department of Pathology, UCSF, 513 Parnassus Ave., San Francisco, CA, 94143, USA.
| | - Ryan M McWhirter
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | - Bilal Hameed
- Division of Hepatology and Liver Transplant, UCSF, 513 Parnassus Ave., S-357, San Francisco, CA, 94143, USA.
| | - Elizabeth M Wayne
- Department of Transplantation-Abdominal, UCSF, 513 Parnassus Ave., S-357, San Francisco, CA, 94143, USA.
| | - Francis Y Yao
- Division of Hepatology and Liver Transplant and The Liver Center, UCSF, 513 Parnassus Ave., S-357, San Francisco, CA, 94143, USA.
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center and The Liver Center, University of California San Francisco (UCSF), 550 16th St., Box 3211, San Francisco, CA, 94143, USA.
| | - John W Park
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Abstract
Molecular characterization of circulating tumor cells (CTCs) found in the blood of cancer patients offers the potential to provide new insights into the biology of cancer metastasis. However, since they are rare and difficult to isolate, the molecular nature of CTCs remains poorly understood. In this paper, we reviewed a decade's worth of scientific literature (2003-2013) describing efforts on isolation and genomic analysis of CTCs. The limited number of CTC genomic studies we found attested to the infancy of this field of study. These initial reports, however, provide an important framework for future comprehensive exploration of CTC biology. For CTCs to be broadly accepted as therapeutic targets and biomarkers of metastatic spread, further in-depth molecular characterization is warranted.
Collapse
|
26
|
Magbanua MJM, Carey LA, DeLuca A, Hwang J, Scott JH, Rimawi MF, Mayer EL, Marcom PK, Liu MC, Esteva FJ, Park JW, Rugo HS. Circulating tumor cell analysis in metastatic triple-negative breast cancers. Clin Cancer Res 2014; 21:1098-105. [PMID: 25524311 DOI: 10.1158/1078-0432.ccr-14-1948] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent developments in rare-cell technology have led to improved blood-based assays that allow for the reliable detection, enumeration, and more recently, genomic profiling of circulating tumor cells (CTC). We evaluated two different approaches for enumeration of CTCs in a prospective therapeutic study of patients with metastatic triple-negative breast cancer (TNBC). EXPERIMENTAL DESIGN The CellSearch system, a commercially available and U.S. Food and Drug Administration (FDA)-cleared assay for CTC enumeration, and IE/FC, an alternative method using EPCAM-based immunomagnetic enrichment and flow cytometry that maintains cell viability, were used to enumerate CTCs in the blood of patients with metastatic TNBC. CTC numbers were assessed at baseline and 7 to 14 days after initiation of therapy with cetuximab ± carboplatin in a phase II multicenter clinical trial (TBCRC 001). RESULTS CTC numbers from two methods were significantly correlated at baseline (r = 0.62) and at 7 to 14 days (r = 0.53). Baseline CTCs showed no association with time-to-progression (TTP), whereas CTCs at 7 to 14 days were significantly correlated with TTP (CellSearch P = 0.02; IE/FC P = 0.03). CTCs at both time points were significantly associated with overall survival (OS) [CellSearch: baseline (P = 0.0001) and 7 to 14 days (P < 0.0001); IE/FC: baseline (P = 0.0009) and 7 to 14 days (P = 0.0086)]. CONCLUSIONS Our findings demonstrate that CTC enumeration by two different assays was highly concordant. In addition, results of both assays were significantly correlated with TTP and OS in patients with TNBC. The IE/FC method is also easily adapted to isolation of pure populations of CTCs for genomic profiling.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Amy DeLuca
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jimmy Hwang
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Janet H Scott
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | | | | | - Minetta C Liu
- Georgetown University, Washington, District of Columbia
| | - Francisco J Esteva
- Laura & Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - John W Park
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| | | |
Collapse
|
27
|
Lang JE, Scott JH, Wolf DM, Novak P, Punj V, Magbanua MJM, Zhu W, Mineyev N, Haqq CM, Crothers JR, Esserman LJ, Tripathy D, van 't Veer L, Park JW. Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Res Treat 2014; 149:121-31. [PMID: 25432738 DOI: 10.1007/s10549-014-3215-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/17/2014] [Indexed: 02/05/2023]
Abstract
Circulating tumor cells (CTCs) are prognostic in all stages of breast cancer. However, since they are extremely rare, little is known about the molecular nature of these cells. We report a novel strategy for the isolation and expression profiling of pure populations of CTCs derived from peripheral blood. We developed a method to isolate CTCs based on immunomagnetic capture followed by fluorescence-activated cell sorting (IE/FACS). After assay validation using the BT474 cell line spiked into blood samples in vitro, RNA from CTCs isolated from the blood of five metastatic breast cancer (MBC) patients was linearly amplified and subjected to gene expression profiling via cDNA microarrays. We isolated a range of 9-993 captured CTCs from five MBC patients' blood and profiled their RNA in comparison to a diverse panel of primary breast tumors (n = 55). Unsupervised hierarchical clustering revealed that CTC profiles clustered with more aggressive subtypes of primary breast tumors and were readily distinguishable from peripheral blood (PB) and normal epithelium. Differential expression analysis revealed CTCs to have downregulated apoptosis, and they were distinguishable from PB by the relative absence of immune-related signals. As expected, CTCs from MBC had significantly higher risk of recurrence scores than primary tumors (p = 0.0073). This study demonstrates that it is feasible to isolate CTCs from PB with high purity through IE/FACS and profile them via gene expression analysis. Our approach may inform the discovery of therapeutic predictors and be useful for real-time identification of emerging resistance mechanisms in MBC patients.
Collapse
Affiliation(s)
- Julie E Lang
- Division of Breast and Soft Tissue Surgery, Department of Surgery, Norris Comprehensive Cancer Center (NCCC), University of Southern California (USC), 1510 San Pablo Street Suite 412, Los Angeles, CA, 90033-0800, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Magbanua MJM, Roy R, Sosa EV, Hauranieh L, Kablanian A, Eisenbud LE, Ryazantsev A, Au A, Scott JH, Melisko M, Park JW. Genome-wide copy number analysis of cerebrospinal fluid tumor cells and their corresponding archival primary tumors. GENOMICS DATA 2014; 2:60-2. [PMID: 26484071 PMCID: PMC4535622 DOI: 10.1016/j.gdata.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 11/10/2022]
Abstract
A debilitating complication of breast cancer is the metastatic spread of tumor cells to the leptomeninges or cerebrospinal fluid (CSF). Patients diagnosed with this aggressive clinical syndrome, known as leptomeningeal carcinomatosis, have very poor prognosis. Despite improvements in detecting cerebrospinal fluid tumor cells (CSFTCs), information regarding their molecular biology is extremely limited. In our recent work, we utilized a protocol previously used for circulating tumor cell isolation to purify tumor cells from the CSF. We then performed genomic characterization of CSFTCs as well as archival tumors from the same patient. Here, we describe the microarray data and quality controls associated with our study published in the Cancer Research journal in 2013 [1]. We also provide an R script containing code for quality control of microarray data and assessment of copy number calls. The microarray data has been deposited into Gene Expression Omnibus under accession # GSE46068.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA ; Helen Diller Family Comprehensive Cancer Center Computational Biology Core, University of California San Francisco, San Francisco, California, USA
| | - Eduardo V Sosa
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Louai Hauranieh
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Andrea Kablanian
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Lauren E Eisenbud
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Artem Ryazantsev
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Alfred Au
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Janet H Scott
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Michelle Melisko
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - John W Park
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|