1
|
Tapeinos C. Graphene‐Based Nanotechnology in Neurodegenerative Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christos Tapeinos
- Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI-00014 Finland
| |
Collapse
|
2
|
Click chemistry as a tool in biosensing systems for sensitive copper detection. Biosens Bioelectron 2020; 169:112614. [PMID: 32961499 DOI: 10.1016/j.bios.2020.112614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022]
Abstract
Copper detection for diagnostic purposes is an appealing field due to the important biological role copper plays as a trace metal. A convenient strategy for sensing copper is to utilize its catalytic ability. Therefore, this review summarizes approaches for copper determination by CuI-catalyzed azide/alkyne cycloaddition (CuAAC). The concept was introduced in 2006 and all contributions made up to the middle of 2020 are covered in this review. The issue is divided into three categories: electrochemical, visual, and fluorescence-based methods. The advantages, as well as the disadvantages, of every group, are discussed in detail. The methodology which allows for the determination of copper content in water and human biological samples from 5 s up to 48 h without complex instrumentation are discussed. The reported range of limit of detection (LOD) was 0.38 aM-20 μM, with 1-10 nM being the typical range. The most successful strategies involved using DNA chains or enzymes in the sensing systems.
Collapse
|
3
|
A colorimetric immunoassay for determination of Escherichia coli O157:H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework. Mikrochim Acta 2020; 187:506. [PMID: 32821958 DOI: 10.1007/s00604-020-04407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Cobalt-based zeolitic imidazolate framework nanosheets (ZIF-67) with oxidase-like catalytic activities as an immunoprobe were employed to enhance the sensitivity of an immunoassay. ZIF-67 was synthesized via the solvothermal method using 2-methylimidazole and cobalt dichloride as substrates. A colorimetric immunoassay for Escherichia coli (E. coli) O157:H7 was designed. Preparation of the immunoprobe involved self-polymerized dopamine being applied for the surface modification of ZIF-67 nanosheets in order to bind to the antibody, which was used to identify E. coli O157:H7. ZIF-67 catalyze the oxidation of 3,3',5,5'-tetramethylbiphenyl (TMB) and produced a color change from colorless to blue. Upon reaction termination, the absorbance was measured at 450 nm. By combining ZIF-67@PDA catalyzed chromogenic reaction with antibody recognition and magnetic separation, the limit of determination is 12 CFU mL-1 and the linear range is 30 to 3.0 × 108 CFU mL-1. The proposed colorimetric immunoassay was successfully utilized to detect E. coli O157:H7 of spiked food samples. Graphical abstract.
Collapse
|
4
|
Zhang X, Wang F, Sheng JL, Sun MX. Advances and Application of DNA-functionalized Nanoparticles. Curr Med Chem 2020; 26:7147-7165. [DOI: 10.2174/0929867325666180501103620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023]
Abstract
DNA-functionalized nanoparticle (DfNP) technology, the integration of DNA with
nanotechnology, has emerged over recent decades as a promising biofunctionalization tool in
the light of biotechnological approaches. The development of DfNPs has exhibited significant
potential for several biological and biomedical applications. In this review, we focus on the
mechanism of a series of DNA-NP nanocomposites and highlight the superstructures of
DNA-based NPs. We also summarize the applications of these nanocomposites in cell imaging,
cancer therapy and bioanalytical detection.
Collapse
Affiliation(s)
- Xun Zhang
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| | - Fei Wang
- Shanghai Tuberculosis Key Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jin-Liang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Min-Xuan Sun
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
5
|
Qin Y, Li M, Yang Y, Gao Z, Zhang H, Zhao J. A unimolecular DNA fluorescent probe for determination of copper ions based on click chemistry. RSC Adv 2020; 10:6017-6021. [PMID: 35497443 PMCID: PMC9049493 DOI: 10.1039/c9ra10174h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
A homogenous fluorescence method was constructed for Cu2+ detection by employing DNA-templated click chemistry and exonuclease reaction. In this strategy, a dumbbell shaped DNA probe, which contained an alkyne group and an azide group at its ends, was designed as the template for the click chemistry reaction, and also the signal probe. In the absence of Cu2+, the DNA probe was digested into small oligonucleotide fragments by exonuclease, resulting in a low fluorescence background. However, this DNA probe can be sealed at its two ends by Cu2+-induced click chemistry ligation in the presence of Cu2+. This closed structure of DNA would remain stable after addition of exonuclease, and could then be stained by SYBR Green I. A strong fluorescence signal was observed, which was related to the concentration of Cu2+. This assay showed high selectivity and reached the detection limit of 39 nM. Moreover, the proposed strategy exhibited satisfactory detection results in real complex sample analysis, and has promising application in environmental monitoring and food safety. A homogenous fluorescence method was constructed for Cu2+ detection by employing DNA-templated click chemistry and exonuclease reaction.![]()
Collapse
Affiliation(s)
- Yingfeng Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
- Ministry of Education
- Guilin 541004
- PR China
| | - Ming Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
- Ministry of Education
- Guilin 541004
- PR China
| | - Yingying Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
- Ministry of Education
- Guilin 541004
- PR China
| | - Zhiying Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
- Ministry of Education
- Guilin 541004
- PR China
| | - Huaisheng Zhang
- Department of Chemistry and Biochemistry
- Jackson State University
- Jackson
- USA
| | - Jingjin Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)
- Ministry of Education
- Guilin 541004
- PR China
- Department of Chemistry and Biochemistry
| |
Collapse
|
6
|
Qiu S, Yuan L, Wei Y, Zhang D, Chen Q, Lin Z, Luo L. DNA template-mediated click chemistry-based portable signal-on sensor for ochratoxin A detection. Food Chem 2019; 297:124929. [PMID: 31253344 DOI: 10.1016/j.foodchem.2019.05.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
A novel signal-on portable sensing system has been developed for OTA detection using personal glucose meter (PGM) as signal transducer. In the study, we explore the potential of using a short dsDNA as template to trigger the "click" ligation of two DNA strands, further improve the stability of DNA strand on the magnetic beads (MBs) surface, and thereby reduce the background signal. Compared with no "click" ligation, the background signal decreases 7.5 times. Both the sensitivity and selectivity are greatly promoted. A high sensitivity with OTA detection down to 72 pg/mL is achieved, which is comparable with several existing detectors, such as fluorescence-based detectors and electrochemical detectors. The feasibility of the strategy in real samples is well verified and evaluated by detecting OTA in feed samples, indicating the potential application in the food safety field.
Collapse
Affiliation(s)
- Suyan Qiu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Lijuan Yuan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yihua Wei
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Dawen Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qinglong Chen
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Linguang Luo
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
7
|
|
8
|
Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.010] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Wang Y, Wang L, Xue J, Dong J, Cai J, Hua X, Wang M, Zhang C, Liu F. Signal-Amplified Lateral Flow Test Strip for Visual Detection of Cu2. PLoS One 2017; 12:e0169345. [PMID: 28072878 PMCID: PMC5224791 DOI: 10.1371/journal.pone.0169345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 11/19/2022] Open
Abstract
A signal-amplified lateral flow test strip (SA-LFTS) for the detection of Cu2+ in aqueous solution was constructed based on Cu+-catalyzed click chemistry and hybridization of single-stranded DNA (ssDNA). Alkyne and azide modified ssDNA acted as specific elements for Cu2+ recognition, and a chemical ligation product formed through Cu+-catalyzed alkyne-azide cycloaddition. Hybridization of ssDNA-labeled gold nanoparticles resulted in high sensitivity, and the output signal could be observed directly by the naked eye. Using the developed SA-LFTS under optimal conditions, Cu2+ could be detected rapidly with limit of detections of 5 nM and 4.2 nM by visual observation and quantitative analysis, respectively. The sensitivity (i.e. the visual limit of detection) of the SA-LFTS was 80-times higher than that of traditional LFTS. The SA-LFTS was applied to the determination of Cu2+ in municipal water and river water samples with the results showing good recovery and accuracy. The developed test strip is promising for point-of-care applications and detection of Cu2+ in the field.
Collapse
Affiliation(s)
- Yulong Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China
| | - Limin Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Juanjuan Xue
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Jinbo Dong
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Jia Cai
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiude Hua
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Minghua Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Cunzheng Zhang
- Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
10
|
Tăbăcaru A, Furdui B, Ghinea IO, Cârâc G, Dinică RM. Recent advances in click chemistry reactions mediated by transition metal based systems. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2036-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Tu Q, Zhao L, Han X, Wang DE, Yuan MS, Tian C, Wang J. A visualized method for Cu2+ ion detection by self-assembling azide functionalized free graphene oxide using click chemistry. RSC Adv 2016. [DOI: 10.1039/c6ra18488j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a visualized method for the detection of Cu2+ ions by self-assembling azide functionalized graphene oxide using click chemistry.
Collapse
Affiliation(s)
- Qin Tu
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Lei Zhao
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- P. R. China
| | - Xiang Han
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Dong-En Wang
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Mao-Sen Yuan
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Chang Tian
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Jinyi Wang
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
- College of Veterinary Medicine
| |
Collapse
|
13
|
|
14
|
Wang F, Li Y, Li W, Chen J, Zhang Q, Anjum Shahzad S, Yu C. A fluorescence turn-on detection of copper(II) based on the template-dependent click ligation of oligonucleotides. Talanta 2014; 132:72-6. [PMID: 25476281 DOI: 10.1016/j.talanta.2014.08.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/16/2022]
Abstract
In this work, a fluorescence turn-on method for copper(II) detection is reported. A molecular beacon (MB) was designed as a template. Cu(2+) was reduced to Cu(+) in the presence of a reductant (ascorbic acid). Two short single-stranded oligonucleotides one was labeled with a 5'-alkyne and the other with 3'-azide group, proceeded a template-dependent chemical ligation through the Cu(I)-catalyzed azide-alkyne cycloaddition. The newly generated click-ligated long chain oligonucleotide, which was complementary to the MB, opened the MB hairpin structure and resulted in a turn on fluorescence. The increase in fluorescence intensity is directly proportional to the amount of Cu(2+) added to the assay solution. The present assay is quite sensitive and allows the detection of 2 nM Cu(2+). The described assay also exhibits high selectivity over other metal ions.
Collapse
Affiliation(s)
- Fangyuan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongxin Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wenying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Qingfeng Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sohail Anjum Shahzad
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Zhang Z, Li W, Zhao Q, Cheng M, Xu L, Fang X. Highly sensitive visual detection of copper (II) using water-soluble azide-functionalized gold nanoparticles and silver enhancement. Biosens Bioelectron 2014; 59:40-4. [PMID: 24690560 DOI: 10.1016/j.bios.2014.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 03/01/2014] [Indexed: 12/18/2022]
Abstract
A high-sensitive method for the visual detection of copper ions in aqueous solution is developed. The method is based on copper ion-catalyzed 'click' reaction between the water-soluble azide-functionalized gold nanoparticles (AuNPs) and alkyne-modified glass slide. The PEG linker was employed as a stabilizing component along with the terminal azide group to keep the AuNPs stably dispersed in water without the assistance of any organic solvent. In the presence of copper ions, the AuNPs are 'clicked' on the slide, and the darkness of the AuNPs in the sample spot is promoted by silver enhancement process. Only a tiny amount of sample (10 μl) is needed with the detectable concentration down to 62 pM by the commonly used flatbed scanner, which is 2-3 orders of magnitude lower than those in previous reports. The selectivity relative to other potentially interfering ions and the applicability in real samples, human serum and tap water, have also been evaluated. Our method has a good potential in point-of-use applications and environment surveys.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Wenqing Li
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qiuling Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Ming Cheng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Li Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China.
| |
Collapse
|
16
|
|