1
|
Neven LG. A different approach to identifying thermal parameters for invasive species. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae135. [PMID: 39499497 DOI: 10.1093/jee/toae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 11/07/2024]
Abstract
The brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is a polyphagous invasive insect found in the eastern United States in 1998 but became a major agricultural pest in 2010. Environmental temperatures regulate the location of invasive species establishment in new locations. To determine those areas where an invasive species might establish it is essential to understand the metabolic response of all life stages to temperature. Differential scanning calorimetry is a useful tool to monitor living organisms' metabolism at different temperatures, providing vital information related to the ability of the species to survive in new environments. The information obtained from isothermal and scanning calorimetric experiments on all the life stages of H. halys indicates that the third instar is the most thermoresponsive stage and eggs and fifth instar are the least thermoresponsive, whereas the third instars exhibit a broad range of thermoresponsiveness as compared to all other developmental stages. The recorded values for lower, optimal, and upper developmental temperatures in this study were similar to those reported by other researchers using laboratory and field data to develop degree-day models. This method can help in the rapid development of degree day models to improve and synchronize control efforts for newly invasive species.
Collapse
Affiliation(s)
- Lisa G Neven
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA
| |
Collapse
|
2
|
Yang S, Di Lodovico E, Rupp A, Harms H, Fricke C, Miltner A, Kästner M, Maskow T. Enhancing insights: exploring the information content of calorespirometric ratio in dynamic soil microbial growth processes through calorimetry. Front Microbiol 2024; 15:1321059. [PMID: 38371938 PMCID: PMC10869564 DOI: 10.3389/fmicb.2024.1321059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024] Open
Abstract
Catalytic activity of microbial communities maintains the services and functions of soils. Microbial communities require energy and carbon for microbial growth, which they obtain by transforming organic matter (OM), oxidizing a fraction of it and transferring the electrons to various terminal acceptors. Quantifying the relations between matter and energy fluxes is possible when key parameters such as reaction enthalpy (∆rH), energy use efficiency (related to enthalpy) (EUE), carbon use efficiency (CUE), calorespirometric ratio (CR), carbon dioxide evolution rate (CER), and the apparent specific growth rate (μ app ) are known. However, the determination of these parameters suffers from unsatisfying accuracy at the technical (sample size, instrument sensitivity), experimental (sample aeration) and data processing levels thus affecting the precise quantification of relationships between carbon and energy fluxes. To address these questions under controlled conditions, we analyzed microbial turnover processes in a model soil amended using a readily metabolizable substrate (glucose) and three commercial isothermal microcalorimeters (MC-Cal/100P, TAM Air and TAM III) with different sample sizes meaning varying volume-related thermal detection limits (LODv) (0.05- 1 mW L-1). We conducted aeration experiments (aerated and un-aerated calorimetric ampoules) to investigate the influence of oxygen limitation and thermal perturbation on the measurement signal. We monitored the CER by measuring the additional heat caused by CO2 absorption using a NaOH solution acting as a CO2 trap. The range of errors associated with the calorimetrically derived μ app , EUE, and CR was determined and compared with the requirements for quantifying CUE and the degree of anaerobicity (η A ) . Calorimetrically derived μ app and EUE were independent of the instrument used. However, instruments with a low LODv yielded the most accurate results. Opening and closing the ampoules for oxygen and CO2 exchange did not significantly affect metabolic heats. However, regular opening during calorimetrically derived CER measurements caused significant measuring errors due to strong thermal perturbation of the measurement signal. Comparisons between experimentally determined CR, CUE,η A , and modeling indicate that the evaluation of CR should be performed with caution.
Collapse
Affiliation(s)
- Shiyue Yang
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Eliana Di Lodovico
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Landau in der Pfalz, Germany
| | - Alina Rupp
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Christian Fricke
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Landau in der Pfalz, Germany
| | - Anja Miltner
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Matthias Kästner
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Thomas Maskow
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
3
|
Merino A, Omil B, Piñeiro V, Barros N, Souza-Alonso P, Campo J. Soil C dynamics after deforestation and subsequent conversion of arable cropland to grassland in humid temperate areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165793. [PMID: 37495129 DOI: 10.1016/j.scitotenv.2023.165793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Land use and plant-soil management influence soil organic C stocks and soil properties. This study aimed to identify the main mechanisms by which these factors alter soil organic matter (SOM) dynamics and stocks. Changes in the organic C pools and biochemical quality in different OM compartments were assessed: a) after deforestation and intensive cultivation (SOM loss) and then, b) after the conversion of cropland to grassland (SOM replenishment) in a chronosequence of recovery (1-45 years). Topsoil samples were subjected to physical fractionation to assess the distribution of free particulate OM (POM) and mineral associated OM (MAOM). SOM quality was characterized by 13C NMR spectroscopy, thermal analysis (DSC/TG), and microbial activity was monitored by isothermal microcalorimetry. Deforestation and intensive cultivation led to the loss of 80 % of the C stored in the upper mineral soil (up to 30-35 cm). The POM was almost depleted, MAOM underwent significant losses (>40 %) and all OM compounds, including the aromatic C, were affected. The large and unexpected loss of MAOM can be attributed to the low specific surface soil area and also to the labile (biodegradable) nature of the OM in this fraction. After 45 years, conversion of cropland to grassland recovered 68 % of the C lost in the mineral soil (mainly as MAOM), at an annual rate of 1.25 Mg C ha-1. The present findings showed that the persistence of long-term OM depends on how strongly organic compounds are adsorbed onto mineral surfaces (i.e., the specific surface area) and the biochemical nature of OM compounds. Adequate plant-soil management favoured the replenishment of the MAOM under these experimental conditions, and this fraction was an active pool in terms of C storage and biochemical quality. This study served to test current theories about changes in soil C fractions due to land use changes and soil-plant management.
Collapse
Affiliation(s)
- Agustín Merino
- Department of Applied Physics, University of Santiago de Compostela, 27002 Lugo, Spain; Elemental Analysis RIAIDT, University of Santiago de Compostela, 27002 Lugo, Spain; Institute of Ecology, National Autonomous University of Mexico, Mexico City 04510, Mexico; Soil Science and Chemistry Department, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Beatriz Omil
- Department of Applied Physics, University of Santiago de Compostela, 27002 Lugo, Spain; Elemental Analysis RIAIDT, University of Santiago de Compostela, 27002 Lugo, Spain; Institute of Ecology, National Autonomous University of Mexico, Mexico City 04510, Mexico; Soil Science and Chemistry Department, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Verónica Piñeiro
- Department of Applied Physics, University of Santiago de Compostela, 27002 Lugo, Spain; Elemental Analysis RIAIDT, University of Santiago de Compostela, 27002 Lugo, Spain; Institute of Ecology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Nieve Barros
- Department of Applied Physics, University of Santiago de Compostela, 27002 Lugo, Spain; Elemental Analysis RIAIDT, University of Santiago de Compostela, 27002 Lugo, Spain; Institute of Ecology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Pablo Souza-Alonso
- Department of Applied Physics, University of Santiago de Compostela, 27002 Lugo, Spain; Elemental Analysis RIAIDT, University of Santiago de Compostela, 27002 Lugo, Spain; Institute of Ecology, National Autonomous University of Mexico, Mexico City 04510, Mexico; Soil Science and Chemistry Department, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Julio Campo
- Department of Applied Physics, University of Santiago de Compostela, 27002 Lugo, Spain; Elemental Analysis RIAIDT, University of Santiago de Compostela, 27002 Lugo, Spain; Institute of Ecology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Thermodynamics of Soil Microbial Metabolism: Applications and Functions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The thermodynamic characterization of soils would help to study and to understand their strategies for survival, as well as defining their evolutionary state. It is still a challenging goal due to difficulties in calculating the thermodynamic state variables (enthalpy, Gibbs energy, and entropy) of the reactions taking place in, and by, soils. Advances in instrumentation and methodologies are bringing options for those calculations, boosting the interest in this subject. The thermodynamic state variables involve considering the soil microbial functions as key channels controlling the interchange of matter and energy between soil and the environment, through the concept of microbial energy use efficiency. The role of microbial diversity using the energy from the soil organic substrates, and, therefore, the who, where, with whom, and why of managing that energy is still unexplored. It could be achieved by unraveling the nature of the soil organic substrates and by monitoring the energy released by the soil microbial metabolism when decomposing and assimilating those substrates. This review shows the state of the art of these concepts and the future impact of thermodynamics on soil science and on soil ecology.
Collapse
|
5
|
Braissant O, Astasov-Frauenhoffer M, Waltimo T, Bonkat G. A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology. Front Microbiol 2020; 11:547458. [PMID: 33281753 PMCID: PMC7705206 DOI: 10.3389/fmicb.2020.547458] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Viability and metabolic assays are commonly used as proxies to assess the overall metabolism of microorganisms. The variety of these assays combined with little information provided by some assay kits or online protocols often leads to mistakes or poor interpretation of the results. In addition, the use of some of these assays is restricted to simple systems (mostly pure cultures), and care must be taken in their application to environmental samples. In this review, the necessary data are compiled to understand the reactions or measurements performed in many of the assays commonly used in various aspects of microbiology. Also, their relationships to each other, as metabolism links many of these assays, resulting in correlations between measured values and parameters, are discussed. Finally, the limitations of these assays are discussed.
Collapse
Affiliation(s)
- Olivier Braissant
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | | | - Tuomas Waltimo
- Department Research, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
6
|
Nogales A, Ribeiro H, Nogales-Bueno J, Hansen LD, Gonçalves EF, Coito JL, Rato AE, Peixe A, Viegas W, Cardoso H. Response of Mycorrhizal 'Touriga Nacional' Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1499. [PMID: 33167584 PMCID: PMC7694551 DOI: 10.3390/plants9111499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Heat stress negatively affects several physiological and biochemical processes in grapevine plants. In this work, two new methods, calorespirometry, which has been used to determine temperature adaptation in plants, and near-infrared (NIR) spectroscopy, which has been used to determine several grapevine-related traits and to discriminate among varieties, were tested to evaluate grapevine response to high temperatures. 'Touriga Nacional' variety grapevines, inoculated or not with Rhizoglomus irregulare or Funneliformis mosseae, were used in this study. Calorespirometric parameters and NIR spectra, as well as other parameters commonly used to assess heat injury in plants, were measured before and after high temperature exposure. Growth rate and substrate carbon conversion efficiency, calculated from calorespirometric measurements, and stomatal conductance, were the most sensitive parameters for discriminating among high temperature responses of control and inoculated grapevines. The results revealed that, although this vine variety can adapt its physiology to temperatures up to 40 °C, inoculation with R. irregulare could additionally help to sustain its growth, especially after heat shocks. Therefore, the combination of calorespirometry together with gas exchange measurements is a promising strategy for screening grapevine heat tolerance under controlled conditions and has high potential to be implemented in initial phases of plant breeding programs.
Collapse
Affiliation(s)
- Amaia Nogales
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - Hugo Ribeiro
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
| | - Julio Nogales-Bueno
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Elsa F. Gonçalves
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - João Lucas Coito
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - Ana Elisa Rato
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
| | - Augusto Peixe
- Departamento de Fitotecnia, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (H.R.); (J.N.-B.); (A.E.R.); (A.P.)
| | - Wanda Viegas
- LEAF—Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (E.F.G.); (J.L.C.); (W.V.)
| | - Hélia Cardoso
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
7
|
Barros N, Fernandez I, Byrne KA, Jovani‐Sancho AJ, Ros‐Mangriñan E, Hansen LD. Thermodynamics of soil organic matter decomposition in semi‐natural oak (
Quercus
) woodland in southwest Ireland. OIKOS 2020. [DOI: 10.1111/oik.07261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nieves Barros
- Dept of Applied Physics, Univ. of Santiago de Compostela ES‐15782 Santiago de Compostela Spain
| | - Irene Fernandez
- Dept of Soil Biochemistry of the IIAG‐CSIC, Spanish National Research Council Santiago de Compostela Spain
| | - Ken A. Byrne
- Dept of Biological Sciences, School of Natural Sciences, Univ. of Limerick Ireland
| | - A. Jonay Jovani‐Sancho
- Dept of Biological Sciences, School of Natural Sciences, Univ. of Limerick Ireland
- School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus UK
| | - Eva Ros‐Mangriñan
- Dept of Biological Sciences, School of Natural Sciences, Univ. of Limerick Ireland
| | - Lee D. Hansen
- Dept of Chemistry and Biochemistry, Brigham Young Univ. Provo UT USA
| |
Collapse
|
8
|
Ruiz T, Bec A, Danger M, Koussoroplis AM, Aguer JP, Morel JP, Morel-Desrosiers N. A microcalorimetric approach for investigating stoichiometric constraints on the standard metabolic rate of a small invertebrate. Ecol Lett 2018; 21:1714-1722. [DOI: 10.1111/ele.13137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Ruiz
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | - Alexandre Bec
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | | | | | - Jean-Pierre Aguer
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | - Jean-Pierre Morel
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | | |
Collapse
|
9
|
Skolik RA, Konkle ME, Menze MA. Calorespirometry: A Powerful, Noninvasive Approach to Investigate Cellular Energy Metabolism. J Vis Exp 2018. [PMID: 29912182 DOI: 10.3791/57724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many cell lines used in basic biological and biomedical research maintain energy homeostasis through a combination of both aerobic and anaerobic respiration. However, the extent to which both pathways contribute to the landscape of cellular energy production is consistently overlooked. Transformed cells cultured in saturating levels of glucose often show a decreased dependency on oxidative phosphorylation for ATP production, which is compensated by an increase in substrate-level phosphorylation. This shift in metabolic poise allows cells to proliferate despite the presence of mitochondrial toxins. In neglecting the altered metabolic poise of transformed cells, results from a pharmaceutical screening may be misinterpreted since the potentially mitotoxic effects may not be detected using model cell lines cultured in the presence of high glucose concentrations. This protocol describes the pairing of two powerful techniques, respirometry and calorimetry, which allows for the quantitative and noninvasive assessment of both aerobic and anaerobic contributions to cellular ATP production. Both aerobic and anaerobic respirations generate heat, which can be monitored via calorimetry. Meanwhile, measuring the rate of oxygen consumption can assess the extent of aerobic respiration. When both heat dissipation and oxygen consumption are measured simultaneously, the calorespirometric ratio can be determined. The experimentally obtained value can then be compared to the theoretical oxycaloric equivalent and the extent of the anaerobic respiration can be judged. Thus, calorespirometry provides a unique method to analyze a wide range of biological questions, including drug development, microbial growth, and fundamental bioenergetics under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Robert A Skolik
- Department of Biological Sciences, University of Louisville;
| | | | | |
Collapse
|
10
|
Barros N, Feijoo S, Pérez-Cruzado C, Hansen LD. Effect of soil storage at 4 °C on the calorespirometric measurements of soil microbial metabolism. AIMS Microbiol 2017; 3:762-773. [PMID: 31294187 PMCID: PMC6604967 DOI: 10.3934/microbiol.2017.4.762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022] Open
Abstract
Soil samples must usually be stored for a time between collection and measurements of microbial metabolic properties. However, little is known about the influence of storage conditions on microbial metabolism when studied by calorespirometry. Calorespirometry measures the heat rate and the CO2 rate of microbial metabolism, where the ratio of heat and CO2 released, the calorespirometric ratio, informs about the nature of substrates being used by microorganisms. Application to soil microbiology is very recent, and little is known about the influence of the common soil preparation practices between collection and analysis on the calorespirometric measurements. For these reasons, the effect of storage at 4 °C on the microbial metabolism was determined by calorespirometry. Results show CO2 production rate decreases with storage time while the evolution of metabolic heat rate is more stable. The calorespirometric ratio increases with storage time in soil samples with organic matter characterized by lower carbohydrate contribution to the total carbon and higher aromaticity and is unaffected in soil samples with lower carbohydrates in the organic matter and higher aromaticity. Therefore, the calorespirometric ratio values may vary for the same soil sample, such that the soil organic matter properties, as well as the time stored at 4 °C, must be considered in interpreting calorespirometric data on soils.
Collapse
Affiliation(s)
- Nieves Barros
- Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sergio Feijoo
- Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - César Pérez-Cruzado
- Department of Agroforestry Engineering, University of Santiago de Compostela, Lugo 27002, Spain
| | - Lee D Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
11
|
Solokhina A, Brückner D, Bonkat G, Braissant O. Metabolic activity of mature biofilms of Mycobacterium tuberculosis and other non-tuberculous mycobacteria. Sci Rep 2017; 7:9225. [PMID: 28835629 PMCID: PMC5569076 DOI: 10.1038/s41598-017-10019-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022] Open
Abstract
Mycobacteria are classified into two groups, fast- and slow-growing. Often, fast-growing mycobacteria are assumed to have a higher metabolic activity than their slower counterparts, but in mature biofilms this assumption might not be correct. Indeed, when measuring the metabolic activity of mycobacterial biofilms with two independent non-invasive techniques (isothermal microcalorimetry and tunable diode laser absorption spectrometry), mature biofilms of slow- and fast-growing species appeared more alike than expected. Metabolic heat production rate was 2298 ± 181 µW for M. smegmatis and 792 ± 81 µW for M. phlei, while M. tuberculosis and M. bovis metabolic heat production rates were between these values. These small differences were further confirmed by similar oxygen consumption rates (3.3 ± 0.2 nMole/s and 1.7 ± 0.3 nMole/s for M. smegmatis and M. tuberculosis, respectively). These data suggest that the metabolic potential of slow-growing mycobacterial biofilms has been underestimated, particularly for pathogenic species.
Collapse
Affiliation(s)
- Anna Solokhina
- Center of Biomechanics & Biocalorimetry, University Basel, Gewerbestr. 14, CH-4123, Allschwil, Switzerland
| | - David Brückner
- Center of Biomechanics & Biocalorimetry, University Basel, Gewerbestr. 14, CH-4123, Allschwil, Switzerland
- F. Hoffmann - La Roche, Ltd., Sterile Drug Product Manufacturing, Wurmisweg, CH-4303, Kaiseraugst, Switzerland
| | - Gernot Bonkat
- Alta Uro AG, Centralbahnplatz 6, CH-4051, Basel, Switzerland
| | - Olivier Braissant
- Center of Biomechanics & Biocalorimetry, University Basel, Gewerbestr. 14, CH-4123, Allschwil, Switzerland.
| |
Collapse
|
12
|
A combined application of tunable diode laser absorption spectroscopy and isothermal micro-calorimetry for calorespirometric analysis. J Microbiol Methods 2017. [DOI: 10.1016/j.mimet.2017.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Diet-dependent heat emission reveals costs of post-diapause recovery from different nutritional sources in a carnivorous beetle. Naturwissenschaften 2017; 104:58. [PMID: 28664418 DOI: 10.1007/s00114-017-1481-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
Restoration of fat stores is metabolic first priority for many insects that emerge from hibernation with depleted fat bodies. To some extent, the animals must be flexible and use whatever foods available irrespective of their nutrient composition. Previously, the carabid beetles Anchomenus dorsalis have been found to refill their fat stores to the same extent over 9 days irrespective of the nutrient composition of their food. However, a higher cost of fat deposition when the food was rich in sugar or protein rather than lipid was indicated by higher total energy consumption. Here, we test the hypothesis of increased metabolic costs of building fat stores from sugar- or protein-rich food than from lipid-rich food by microcalorimetry. We measured the heat emitted from beetles that had fed on sugar-, protein-, or lipid-rich food for 0 (common control), 2, 5, or 10 days. As predicted, heat emission was increased in beetles getting sugar- and protein-rich food compared with those getting lipid-rich food. However, we did not confirm the beetles' ability to rebuild fat stores from protein-rich food; instead, they increased in lean mass. Overall, sugar-rich food seems to be optimal for post-winter recovery, because it is better than lipid-rich food that allows concurrent rebuilding of fat stores and lean mass, which may benefit preparation for spring migration and reproduction. We propose that overwintered fruits may be highly preferred post-diapause food for these otherwise mostly carnivorous beetles.
Collapse
|
14
|
Altwasser V, Pätz RR, Lemke T, Paufler S, Maskow T. A simple method for the measurement of metabolic heat production rates during solid-state fermentations using β-carotene production with Blakeslea trispora as a model system. Eng Life Sci 2017; 17:620-628. [PMID: 32624807 DOI: 10.1002/elsc.201600208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 11/08/2022] Open
Abstract
Solid-state fermentation (SSF) technology has been rapidly developed for the past 10 years as a production platform for secondary metabolites, biofuels, food, and pharmaceuticals. Yet, the main drawback of SSF is the local temperature rise of up to 20 K, which potentially reduces the strain activity and inactivates heat sensible products. Due to the low heat capacity and thermal conductivity of mixtures of air with plant material, in comparison to aqueous suspensions in submerged fermentations, heat from metabolic processes is less efficiently dissipated. The exact knowledge of the metabolic heat generation during SSF processes is crucial to guide strategies against overheating. In this work, a simple method using a cost-efficient multichannel instrument is proposed, which allows the determination of heat generation during SSF processes. This method was successfully tested and validated with Blakeslea trispora producing β-carotene during growth on barley. Additionally, the consequences of the generated metabolic heat during SSF on temperature rise and water evaporation were discussed. Finally, changes in growth and product concentration could also be detected by the heat signal, implying the potential as a timesaving screening method.
Collapse
Affiliation(s)
- Vivien Altwasser
- Department of Life Sciences and Process Engineering Anhalt University of Applied Sciences Köthen Germany
| | - Reinhard R Pätz
- Department of Life Sciences and Process Engineering Anhalt University of Applied Sciences Köthen Germany
| | - Thomas Lemke
- C3 Prozess- und Analysentechnik GmbH Haar/bei München Germany
| | - Sven Paufler
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research-UFZ Leipzig Germany
| | - Thomas Maskow
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research-UFZ Leipzig Germany
| |
Collapse
|
15
|
Rohde MT, Paufler S, Harms H, Maskow T. Calorespirometric feeding control enhances bioproduction from toxic feedstocks-Demonstration for biopolymer production out of methanol. Biotechnol Bioeng 2016; 113:2113-21. [PMID: 27043974 DOI: 10.1002/bit.25986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/02/2016] [Accepted: 03/30/2016] [Indexed: 11/08/2022]
Abstract
The sustainable production of fuels and industrial bulk chemicals by microorganisms in biotechnological processes is promising but still facing various challenges. In particular, toxic substrates require an efficient process control strategy. Methanol, as an example, has the potential to become a major future feedstock due to its availability from fossil and renewable resources. However, besides being toxic, methanol is highly volatile. To optimize its dosage during microbial cultivations, an innovative, predictive process control strategy based on calorespirometry, i.e., simultaneous measurements of heat and CO2 emission rates, was developed. This rarely used technique allows an online-estimation of growth parameters such as the specific growth rate and substrate consumption rate as well as a detection of shifts in microbial metabolism thus enabling an adapted feeding for different phases of growth. The calorespirometric control strategy is demonstrated exemplarily for growth of the methylotrophic bacterium Methylobacterium extorquens on methanol and compared to alternative control strategies. Applying the new approach, the methanol concentration could be maintained far below a critical limit, while increased growth rates of M. extorquens and higher final contents of the biopolymer polyhydroxybutyrate were obtained. Biotechnol. Bioeng. 2016;113: 2113-2121. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria-Teresa Rohde
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sven Paufler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
16
|
Affiliation(s)
- Jonathan B Chaires
- JG Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Lee D Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|