1
|
Klińska-Bąchor S, Kędzierska S, Demski K, Banaś A. Phospholipid:diacylglycerol acyltransferase1-overexpression stimulates lipid turnover, oil production and fitness in cold-grown plants. BMC PLANT BIOLOGY 2023; 23:370. [PMID: 37491206 PMCID: PMC10369929 DOI: 10.1186/s12870-023-04379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.
Collapse
Affiliation(s)
- Sylwia Klińska-Bąchor
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland.
| | - Sara Kędzierska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland
| | - Kamil Demski
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Box 190, 234 22, Sweden
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland
| |
Collapse
|
2
|
Herrmann E, Langemeyer L, Auffarth K, Ungermann C, Kümmel D. Targeting of the Mon1-Ccz1 Rab guanine nucleotide exchange factor to distinct organelles by a synergistic protein and lipid code. J Biol Chem 2023; 299:102915. [PMID: 36649906 PMCID: PMC10124900 DOI: 10.1016/j.jbc.2023.102915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/16/2023] Open
Abstract
Activation of the small GTPase Rab7 by its cognate guanine nucleotide exchange factor Mon1-Ccz1 (MC1) is a key step in the maturation of endosomes and autophagosomes. This process is tightly regulated and subject to precise spatiotemporal control of MC1 localization, but the mechanisms that underly MC1 localization have not been fully elucidated. We here identify and characterize an amphipathic helix in Ccz1, which is required for the function of Mon-Ccz1 in autophagy, but not endosomal maturation. Furthermore, our data show that the interaction of the Ccz1 amphipathic helix with lipid packing defects, binding of Mon1 basic patches to positively charged lipids, and association of MC1 with recruiter proteins collectively govern membrane recruitment of the complex in a synergistic and redundant manner. Membrane binding enhances MC1 activity predominantly by increasing enzyme and substrate concentration on the membrane, but interaction with recruiter proteins can further stimulate the guanine nucleotide exchange factor. Our data demonstrate that specific protein and lipid cues convey the differential targeting of MC1 to endosomes and autophagosomes. In conclusion, we reveal the molecular basis for how MC1 is adapted to recognize distinct target compartments by exploiting the unique biophysical properties of organelle membranes and thus provide a model for how the complex is regulated and activated independently in different functional contexts.
Collapse
Affiliation(s)
- Eric Herrmann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Uchida K, Obayashi H, Minamihata K, Wakabayashi R, Goto M, Shimokawa N, Takagi M, Kamiya N. Artificial Palmitoylation of Proteins Controls the Lipid Domain-Selective Anchoring on Biomembranes and the Raft-Dependent Cellular Internalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9640-9648. [PMID: 35882009 DOI: 10.1021/acs.langmuir.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein palmitoylation, a post-translational modification, is universally observed in eukaryotic cells. The localization of palmitoylated proteins to highly dynamic, sphingolipid- and cholesterol-rich microdomains (called lipid rafts) on the plasma membrane has been shown to play an important role in signal transduction in cells. However, this complex biological system is not yet completely understood. Here, we used a combined approach where an artificial lipidated protein was applied to biomimetic model membranes and plasma membranes in cells to illuminate chemical and physiological properties of the rafts. Using cell-sized giant unilamellar vesicles, we demonstrated the selective partitioning of enhanced green fluorescent protein modified with a C-terminal palmitoyl moiety (EGFP-Pal) into the liquid-ordered phase consisting of saturated phospholipids and cholesterol. Using Jurkat T cells treated with an immunostimulant (concanavalin A), we observed the vesicular transport of EGFP-Pal. Further cellular studies with the treatment of methyl β-cyclodextrin revealed the cholesterol-dependent internalization of EGFP-Pal, which can be explained by a raft-dependent, caveolae-mediated endocytic pathway. The present synthetic approach using artificial and natural membrane systems can be further extended to explore the potential utility of artificially lipidated proteins at biological and artificial interfaces.
Collapse
Affiliation(s)
- Kazuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
5
|
Popelka H, Reinhart EF, Metur SP, Leary KA, Ragusa MJ, Klionsky DJ. Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast. J Mol Biol 2021; 433:166809. [PMID: 33484718 DOI: 10.1016/j.jmb.2021.166809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Erin F Reinhart
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Kelsie A Leary
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
6
|
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 2020; 15:e0242677. [PMID: 33296386 PMCID: PMC7725318 DOI: 10.1371/journal.pone.0242677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.
Collapse
Affiliation(s)
- Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Kim Setiawan
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Linda Trübestein
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Gehin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Institute of Bioengineering, Laboratory of Lipid Cell Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Martin Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Geneva, Switzerland
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Terry K. Smith
- School of Biology, BSRC, University of St. Andrews, St. Andrews, United Kingdom
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V, Abert C, Schuschnig M, Graef M, Hummer G, Martens S. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 2020; 369:eaaz7714. [PMID: 32883836 PMCID: PMC7610778 DOI: 10.1126/science.aaz7714] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)-containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12-Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.
Collapse
Affiliation(s)
- Justyna Sawa-Makarska
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| | - Verena Baumann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Nicolas Coudevylle
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Veronika Nogellova
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Christine Abert
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Martina Schuschnig
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Martin Graef
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
8
|
Atkinson JM, Ye Y, Gebru MT, Liu Q, Zhou S, Young MM, Takahashi Y, Lin Q, Tian F, Wang HG. Time-resolved FRET and NMR analyses reveal selective binding of peptides containing the LC3-interacting region to ATG8 family proteins. J Biol Chem 2019; 294:14033-14042. [PMID: 31362979 DOI: 10.1074/jbc.ra119.008723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Selective autophagy sequesters cytoplasmic cargo for lysosomal degradation via the binding of autophagy receptors to Atg8 (autophagy-related 8) family proteins on the autophagic membrane. The sole yeast Atg8 gene has six mAtg8 (mammalian Atg8) homologs, including the MAP1LC3 (microtubule-associated protein-1 light chain 3) family and the GABA receptor-associated proteins. Selective autophagy receptors interact with two conserved hydrophobic pockets (termed the W-site and L-site) of mATG8 proteins through a linear motif called the LC3-interacting region (LIR) with the general composition (W/F/Y)XX(I/L/V). To address a lack in our knowledge regarding LIR peptide specificity toward each mATG8 homolog, here we used competitive time-resolved FRET to sensitively and quantitatively characterize the interactions between LIRs and mAtg8. We report that 14 representative LIR-containing peptides display differential binding affinities toward the mAtg8 proteins and identified the LIR domain peptide of TP53INP1 as exhibiting high affinity for all six mATG8 proteins. Using peptide truncation studies, we found that both N- and C-terminal acidic residues, as well as the C-terminal Cys residue of the TP53INP1 LIR peptide, are required for its high-affinity binding to LC3A and LC3B, whereas binding to the GABARAP subfamily proteins was facilitated by residues either N-terminal or C-terminal to the core motif. Finally, we used NMR chemical shift perturbation analysis to gain molecular insights into these findings. Collectively, our results may aid in the development of molecules that selectively disrupt specific mATG8-LIR interactions to dissect the biological roles of the six mATG8 homologs for potential therapeutic applications.
Collapse
Affiliation(s)
- Jennifer M Atkinson
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Yansheng Ye
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Melat T Gebru
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Qiang Liu
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Shouhao Zhou
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Megan M Young
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Yoshinori Takahashi
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
9
|
Kauffman KJ, Yu S, Jin J, Mugo B, Nguyen N, O'Brien A, Nag S, Lystad AH, Melia TJ. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy 2018; 14:992-1010. [PMID: 29458288 DOI: 10.1080/15548627.2018.1437341] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During macroautophagy/autophagy, mammalian Atg8-family proteins undergo 2 proteolytic processing events. The first exposes a COOH-terminal glycine used in the conjugation of these proteins to lipids on the phagophore, the precursor to the autophagosome, whereas the second releases the lipid. The ATG4 family of proteases drives both cleavages, but how ATG4 proteins distinguish between soluble and lipid-anchored Atg8 proteins is not well understood. In a fully reconstituted delipidation assay, we establish that the physical anchoring of mammalian Atg8-family proteins in the membrane dramatically shifts the way ATG4 proteases recognize these substrates. Thus, while ATG4B is orders of magnitude faster at processing a soluble unprimed protein, all 4 ATG4 proteases can be activated to similar enzymatic activities on lipid-attached substrates. The recognition of lipidated but not soluble substrates is sensitive to a COOH-terminal LIR motif both in vitro and in cells. We suggest a model whereby ATG4B drives very fast priming of mammalian Atg8 proteins, whereas delipidation is inherently slow and regulated by all ATG4 homologs.
Collapse
Affiliation(s)
- Karlina J Kauffman
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| | - Shenliang Yu
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| | - Jiaxin Jin
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA.,b Lanzhou University Second Hospital , Lanzhou , Gansu Province , China
| | - Brian Mugo
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| | - Nathan Nguyen
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| | - Aidan O'Brien
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| | - Shanta Nag
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| | - Alf Håkon Lystad
- c Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo , Norway
| | - Thomas J Melia
- a Department of Cell Biology , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
10
|
Datta G, Hossain ME, Asad M, Rathore S, Mohmmed A. Plasmodium falciparum OTU-like cysteine protease (PfOTU) is essential for apicoplast homeostasis and associates with noncanonical role of Atg8. Cell Microbiol 2017; 19. [PMID: 28423214 DOI: 10.1111/cmi.12748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/12/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022]
Abstract
The metabolic pathways associated with the mitochondrion and the apicoplast in Plasmodium, 2 parasite organelles of prokaryotic origin, are considered as suitable drug targets. In the present study, we have identified functional role of a novel ovarian tumour unit (OTU) domain-containing cysteine protease of Plasmodium falciparum (PfOTU). A C-terminal regulatable fluorescent affinity tag on native protein was utilised for its localization and functional characterization. Detailed studies showed vesicular localization of PfOTU and its association with the apicoplast. Degradation-tag mediated knockdown of PfOTU resulted in abnormal apicoplast development and blocked development of parasites beyond early-schizont stages in subsequent cell cycle; downregulation of PfOTU hindered apicoplast protein import. Further, the isoprenoid precursor-mediated parasite growth-rescue experiments confirmed that PfOTU knockdown specifically effect development of functional apicoplast. We also provide evidence for a possible biological function of PfOTU in membrane deconjugation of Atg8, which may be linked with the apicoplast protein import. Overall, our results show that the PfOTU is involved in apicoplast homeostasis and associates with the noncanonical function of Atg8 in maintenance of parasite apicoplast.
Collapse
Affiliation(s)
- Gaurav Datta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
11
|
Fracchiolla D, Sawa-Makarska J, Zens B, Ruiter AD, Zaffagnini G, Brezovich A, Romanov J, Runggatscher K, Kraft C, Zagrovic B, Martens S. Mechanism of cargo-directed Atg8 conjugation during selective autophagy. eLife 2016; 5. [PMID: 27879200 PMCID: PMC5148612 DOI: 10.7554/elife.18544] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Selective autophagy is mediated by cargo receptors that link the cargo to the isolation membrane via interactions with Atg8 proteins. Atg8 proteins are localized to the membrane in an ubiquitin-like conjugation reaction, but how this conjugation is coupled to the presence of the cargo is unclear. Here we show that the S. cerevisiae Atg19, Atg34 and the human p62, Optineurin and NDP52 cargo receptors interact with the E3-like enzyme Atg12~Atg5-Atg16, which stimulates Atg8 conjugation. The interaction of Atg19 with the Atg12~Atg5-Atg16 complex is mediated by its Atg8-interacting motifs (AIMs). We identify the AIM-binding sites in the Atg5 subunit and mutation of these sites impairs selective autophagy. In a reconstituted system the recruitment of the E3 to the prApe1 cargo is sufficient to drive accumulation of conjugated Atg8 at the cargo. The interaction of the Atg12~Atg5-Atg16 complex and Atg8 with Atg19 is mutually exclusive, which may confer directionality to the system. DOI:http://dx.doi.org/10.7554/eLife.18544.001 A living cell must remove unhealthy or excess material from its interior in order to remain healthy and operational. Cells pack this waste into membrane-bound compartments named autophagosomes in a process called autophagy. So-called autophagy proteins make sure that only the unwanted material is eliminated. However, it was not completely clear how these proteins achieve this. What was known was that proteins called cargo receptors recognize and bind to specific waste materials. At the same time, so-called autophagy enzymes tag the membranes of the autophagosome with a protein known as Atg8, so that cargo receptor molecules can bind this membrane. Now, Fracchiolla, Sawa-Makarska et al. report that, in yeast, an autophagy enzyme links these two events by binding to the cargo receptor and promoting the tagging of the autophagosome’s membrane at the same place. The enzyme in question is a complex made from three autophagy proteins (called Atg12, Atg5 and Atg16), and its activity ensures that the membrane is tagged only next to those materials that need to be disposed of. Although it is now clearer how a cell’s waste ends up in the autophagosome, it is still puzzling how this process is regulated and how the other autophagy-related components contribute to this highly coordinated process. In particular, an important next step will be to find out what is the source of membrane that gives rise to the autophagosome. DOI:http://dx.doi.org/10.7554/eLife.18544.002
Collapse
Affiliation(s)
- Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Justyna Sawa-Makarska
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Bettina Zens
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Anita de Ruiter
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Gabriele Zaffagnini
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Andrea Brezovich
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Julia Romanov
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Kathrin Runggatscher
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Claudine Kraft
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
12
|
Abstract
Macroautophagy, hereafter autophagy, is a major degradation pathway in eukaryotic systems that allows the removal of large intracellular structures such as entire organelles or protein aggregates, thus contributing to the homeostasis of cells and tissues. Autophagy entails the de novo formation of an organelle termed autophagosome, where a cup-shaped structure called isolation membrane nucleates in proximity of a cytoplasmic cargo material. Upon elongation and closure of isolation membranes, the mature autophagosome delivers the sequestered cargo into the lysosomal system for degradation. Among the factors for autophagosome formation are the autophagy-related (Atg) proteins belonging to the Atg8 conjugation system. In this system, the ubiquitin-like Atg8 protein is conjugated to the membrane lipid phosphatidylethanolamine present in autophagosomal membranes. Atg8 can also be removed from membranes by Atg4-mediated deconjugation. Here, we describe in vitro systems that recapitulate the enzymatic reactions occurring in vivo by presenting expression and purification strategies for all the components of the Saccharomyces cerevisiae Atg8 conjugation system. We also present protocols for in vitro Atg8 conjugation and deconjugation reactions employing small and giant unilamellar vesicles.
Collapse
Affiliation(s)
- D Fracchiolla
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - B Zens
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - S Martens
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
13
|
Landajuela A, Hervás JH, Antón Z, Montes LR, Gil D, Valle M, Rodriguez JF, Goñi FM, Alonso A. Lipid Geometry and Bilayer Curvature Modulate LC3/GABARAP-Mediated Model Autophagosomal Elongation. Biophys J 2016; 110:411-422. [PMID: 26789764 DOI: 10.1016/j.bpj.2015.11.3524] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022] Open
Abstract
Autophagy, an important catabolic pathway involved in a broad spectrum of human diseases, implies the formation of double-membrane-bound structures called autophagosomes (AP), which engulf material to be degraded in lytic compartments. How APs form, especially how the membrane expands and eventually closes upon itself, is an area of intense research. Ubiquitin-like ATG8 has been related to both membrane expansion and membrane fusion, but the underlying molecular mechanisms are poorly understood. Here, we used two minimal reconstituted systems (enzymatic and chemical conjugation) to compare the ability of human ATG8 homologs (LC3, GABARAP, and GATE-16) to mediate membrane fusion. We found that both enzymatically and chemically lipidated forms of GATE-16 and GABARAP proteins promote extensive membrane tethering and fusion, whereas lipidated LC3 does so to a much lesser extent. Moreover, we characterize the GATE-16/GABARAP-mediated membrane fusion as a phenomenon of full membrane fusion, independently demonstrating vesicle aggregation, intervesicular lipid mixing, and intervesicular mixing of aqueous content, in the absence of vesicular content leakage. Multiple fusion events give rise to large vesicles, as seen by cryo-electron microscopy observations. We also show that both vesicle diameter and selected curvature-inducing lipids (cardiolipin, diacylglycerol, and lyso-phosphatidylcholine) can modulate the fusion process, smaller vesicle diameters and negative intrinsic curvature lipids (cardiolipin, diacylglycerol) facilitating fusion. These results strongly support the hypothesis of a highly bent structural fusion intermediate (stalk) during AP biogenesis and add to the growing body of evidence that identifies lipids as important regulators of autophagy.
Collapse
Affiliation(s)
- Ane Landajuela
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Javier H Hervás
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Zuriñe Antón
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - L Ruth Montes
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - J Francisco Rodriguez
- Departmento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, Spain
| | - Felix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
14
|
Zhang L, Guo M, Li J, Zheng Y, Zhang S, Xie T, Liu B. Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. MOLECULAR BIOSYSTEMS 2016; 11:2860-6. [PMID: 26299935 DOI: 10.1039/c5mb00466g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to explore the autophagy-related protein 4B(ATG4B) and its targeted candidate agonist in triple-negative breast cancer (TNBC) therapy. In this study, the identification of Atg4B as a novel breast cancer target for screening candidate small molecular agonists was performed by phylogenetic analysis, network construction, molecular modelling, molecular docking and molecular dynamics (MD) simulation. In vitro, MTT assay, electron microscopy, western blot and ROS measurement were used for validating the efficacy of the candidate compounds. We used the phylogenetic analysis of Atg4B and constructed their protein-protein interaction (PPI) network. Also, we screened target compounds of Atg4 proteins from Drugbank and ZINC. Flubendazole was validated for its anti-proliferative efficacy in MDA-MB-231 cells. Further MD simulation results supported the stable interaction between Flubendazole and Atg4B. Moreover, Flubendazole induced autophagy and increased ROS production. In conclusion, in silico analysis and experimental validation together demonstrate that Flubendazole can target Atg4B in MDA-MB-231 cells and induce autophagy, which may shed light on the exploration of this compound as a potential new Atg4B targeted drug for future TNBC therapy.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Lett 2016; 373:19-26. [DOI: 10.1016/j.canlet.2016.01.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
|
16
|
Reggiori F, Codogno P. Assessing the progression of autophagy pathways in different organisms and tissues. Methods 2015; 75:1-2. [PMID: 25747287 DOI: 10.1016/j.ymeth.2015.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Patrice Codogno
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, rue Maria Helena Vieira Da Silva 14, 75993 Paris cedex 14, France.
| |
Collapse
|