1
|
Dumas P. Isothermal titration calorimetry in the single-injection mode with imperfect mixing. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:77-84. [PMID: 34999938 DOI: 10.1007/s00249-021-01588-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 05/23/2023]
Abstract
Isothermal titration calorimetry (ITC) is now a method of choice to obtain thermodynamic information about the interaction between two molecular partners. Most often, the method in use is the so-called multiple-injection method (MIM) consisting in distinct short-time injections of the titrant separated by sufficient delay to reach equilibrium before each new injection. However, an alternative single-injection method (SIM) exists. It consists in a unique continuous injection and, despite the fact that it is quite simple and generally faster than MIM, it is very little used. The goal of this work is to reconsider its theoretical basis. A new equation taking into account the effect of dilution resulting from the continuous titration process is obtained. It allows to consider efficiently the continuum of possibilities from perfect to imperfect mixing of the cell content. It is shown that, to good approximation, imperfect mixing can be accounted for by considering the cell volume as an adjustable parameter. Most likely, this should lead to an artificial increase of it, although one cannot reject the possibility of a decrease. The processing of experimental data on the interaction of Ba++ with 18-crown-6 from led to an increase by 6.9%, which resulted in a much better fit of the titration curve and improved results on the association constant Ka and enthalpy variation ∆H. A criterion is also obtained on the maximum injection rate to be used for maintaining quasi-equilibrium during the whole titration for the association-dissociation mechanism [Formula: see text].
Collapse
Affiliation(s)
- Philippe Dumas
- Department of Integrative Structural Biology, IGBMC, Strasbourg University, ESBS, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France.
| |
Collapse
|
2
|
A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca 2+ and Mg 2+ binding to EDTA. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:429-451. [PMID: 33864101 DOI: 10.1007/s00249-021-01523-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
A small-scale ITC benchmarking study was performed involving 9 biophysics laboratories/facilities, to evaluate inter-laboratory and intra-laboratory basal levels of uncertainty. Our prime goal was to assess a number of important factors that can influence both the data gathered by this technique and the thermodynamic parameter values derived therefrom. In its first part, the study involved 5 laboratories and 13 different instruments, working with centrally prepared samples and the same experimental protocol. The second part involved 4 additional laboratories and 6 more instruments, where the users prepared their own samples according to provided instructions and did the experiments following the same protocol as in the first part. The study design comprised: (1) selecting a minimal set of laboratories; (2) providing very stable samples; (3) providing samples not requiring preparation or manipulation; and (4) providing a well-defined and detailed experimental protocol. Thus, we were able to assess: (i) the variability due to instrument and data analysis performed by each user on centrally prepared samples; (ii) the comparability of data retrieved when using 4 different software packages to analyze the same data, besides the data analysis carried out by the different users on their own experimental results; and (iii) the variability due to local sample preparation (second part of the study). Individual values, as well as averages and standard deviations for the binding parameters for EDTA-cation interaction, were used as metrics for comparing the equilibrium association constant (logK), enthalpy of interaction (ΔH), and the so-called "stoichiometry" (n), a concentration-correction factor.
Collapse
|
3
|
Bastos M, Velazquez-Campoy A. Isothermal titration calorimetry (ITC): a standard operating procedure (SOP). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:363-371. [PMID: 33665758 DOI: 10.1007/s00249-021-01509-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Isothermal titration calorimetry (ITC) is currently widely used in many applied areas of research, spanning protein-ligand binding, metal-ligand interactions, DNA/DNA or protein/DNA interactions, partition to membranes, and polymer surfactant interactions, to mention just a few. This is due to the availability of commercial instruments, and thus the production and spread of an accepted and widely followed SOP is felt by most users, in an effort to produce results that are scientifically correct and comparable. Therefore, within the efforts of Working Group 4 of the ARBRE-MOBIEU COST Action (CA15126), this ITC SOP was generated, alongside SOPs for several other biophysical techniques. Here, we discuss the factors that are fundamental for good experimental design and that need to be carefully considered, as well as machine calibration, in particular chemical calibration, linked to another outcome of Working Group 4 on ITC benchmarking, to be also published in this Special Issue.
Collapse
Affiliation(s)
- Margarida Bastos
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, and Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| |
Collapse
|
4
|
Bou-Abdallah F, Giffune TR. The thermodynamics of protein interactions with essential first row transition metals. Biochim Biophys Acta Gen Subj 2015; 1860:879-891. [PMID: 26569121 DOI: 10.1016/j.bbagen.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism. SCOPE OF REVIEW A rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first row transition metals with relevant proteins and highlight major findings from these thermodynamic studies. GENERAL SIGNIFICANCE The thermodynamic characterization of metal ion-protein interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins' structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases. MAJOR CONCLUSIONS Isothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- State University of New York at Potsdam, Potsdam, NY 13676, United States.
| | - Thomas R Giffune
- State University of New York at Potsdam, Potsdam, NY 13676, United States
| |
Collapse
|
5
|
Beutel O, Roder F, Birkholz O, Rickert C, Steinhoff HJ, Grzybek M, Coskun Ü, Piehler J. Two-Dimensional Trap for Ultrasensitive Quantification of Transient Protein Interactions. ACS NANO 2015; 9:9783-9791. [PMID: 26331529 DOI: 10.1021/acsnano.5b02696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present an ultrasensitive technique for quantitative protein-protein interaction analysis in a two-dimensional format based on phase-separated, micropatterned membranes. Interactions between proteins captured to lipid probes via an affinity tag trigger partitioning into the liquid-ordered phase, which is readily quantified by fluorescence imaging. Based on a calibration with well-defined low-affinity protein-protein interactions, equilibrium dissociation constants >1 mM were quantified. Direct capturing of proteins from mammalian cell lysates enabled us to detect homo- and heterodimerization of signal transducer and activator of transcription proteins. Using the epidermal growth factor receptor (EGFR) as a model system, quantification of low-affinity interactions between different receptor domains contributing to EGFR dimerization was achieved. By exploitation of specific features of the membrane-based assay, the regulation of EGFR dimerization by lipids was demonstrated.
Collapse
Affiliation(s)
- Oliver Beutel
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| | - Friedrich Roder
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| | - Christian Rickert
- Department of Physics, University of Osnabrück , 49076 Osnabrück, Germany
| | | | - Michał Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
- German Center for Diabetes Research (DZD) , 85764 Neuherberg, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
- German Center for Diabetes Research (DZD) , 85764 Neuherberg, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| |
Collapse
|
6
|
Yennawar NH, Fecko JA, Showalter SA, Bevilacqua PC. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility. Methods Enzymol 2015; 567:435-60. [PMID: 26794364 PMCID: PMC6474912 DOI: 10.1016/bs.mie.2015.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications.
Collapse
Affiliation(s)
- Neela H Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julia A Fecko
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip C Bevilacqua
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|