1
|
Koy C, Glocker UM, Danquah BD, Glocker MO. Native and compactly folded in-solution conformers of pepsin are revealed and distinguished by mass spectrometric ITEM-TWO analyses of gas-phase pepstatin A - pepsin complex binding strength differences. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:303-312. [PMID: 37259551 DOI: 10.1177/14690667231178999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pepsin, because of its optimal activity at low acidic pH, has gained importance in mass spectrometric proteome research as a readily available and easy-to-handle protease. Pepsin has also been study object of protein higher-order structure analyses, but questions about how to best investigate pepsin in-solution conformers still remain. We first determined dependencies of pepsin ion charge structures on solvent pH which indicated the in-solution existence of (a) natively folded pepsin (N) which by nanoESI-MS analysis gave rise to a narrow charge state distribution with an 11-fold protonated most intense ion signal, (b) unfolded pepsin (U) with a rather broad ion charge state distribution whose highest ion signal carried 25 protons, and (c) a compactly folded pepsin conformer (C) with a narrow charge structure and a 12-fold protonated ion signal in the center of its charge state envelope. Because pepsin is a protease, unfolded pepsin became its own substrate in solution at pH 6.6 since at this pH some portion of pepsin maintained a compact/native fold which displayed enzymatic activity. Subsequent mass spectrometric ITEM-TWO analyses of pepstatin A - pepsin complex dissociation reactions in the gas phase confirmed a very strong binding of pepstatin A by natively folded pepsin (N). ITEM-TWO further revealed the existence of two compactly folded in-solution pepsin conformers (Ca and Cb) which also were able to bind pepstatin A. Binding strengths of the respective compactly folded pepsin conformer-containing complexes could be determined and apparent gas phase complex dissociation constants and reaction enthalpies differentiated these from each other and from the pepstatin A - pepsin complex which had been formed from natively folded pepsin. Thus, ITEM-TWO turned out to be well suited to pinpoint in-solution pepsin conformers by interrogating quantitative traits of pepstatin A - pepsin complexes in the gas phase.
Collapse
Affiliation(s)
- Cornelia Koy
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Ursula M Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Zammataro A, Koy C, Ruß M, Röwer C, Glocker MO. Intact Transition Epitope Mapping—Serological Inspection by Epitope EXtraction (ITEM—SIX). Molecules 2023; 28:molecules28073092. [PMID: 37049857 PMCID: PMC10096252 DOI: 10.3390/molecules28073092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Precision medicine requests accurate serological inspections to precisely stratify patients for targeted treatment. Intact transition epitope mapping analysis proved surrogate seroconversion of a model organism’s serum when spiked with a monoclonal murine anti-Ovalbumin antibody (mAb) with epitope resolution. Isolation of the IgG fraction from blood serum applied two consecutive protein precipitation steps followed by ultrafiltration and resulted in an ESI-MS analysis-ready IgG preparation. For epitope mapping by epitope extraction, the Ovalbumin antigen was digested with trypsin. After desalting, the peptide mixture was added to the ESI-MS-ready IgG preparation from mAb-spiked serum and the solution was incubated to form an immune complex between the Ovalbumin-derived epitope peptide and the anti-Ovalbumin mAb. Then, the entire mixture of proteins and peptides was directly electrosprayed. Sorting of ions in the mass spectrometer’s gas phase, dissociation of the immune complex ions by collision-induced dissociation, and recording of the epitope peptide ion that had been released from the immune complex proved the presence of the anti-Ovalbumin mAb in serum. Mass determination of the complex-released epitope peptide ion with isotope resolution is highly accurate, guaranteeing high specificity of this novel analysis approach, which is termed Intact Transition Epitope Mapping—Serological Inspections by Epitope EXtraction (ITEM—SIX).
Collapse
|
3
|
Langton DJ, Bhalekar RM, Joyce TJ, Rushton SP, Wainwright BJ, Nargol ME, Shyam N, Lie BA, Pabbruwe MB, Stewart AJ, Waller S, Natu S, Ren R, Hornick R, Darlay R, Su EP, Nargol AVF. The influence of HLA genotype on the development of metal hypersensitivity following joint replacement. COMMUNICATIONS MEDICINE 2022; 2:73. [PMID: 35761834 PMCID: PMC9232575 DOI: 10.1038/s43856-022-00137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/07/2022] [Indexed: 12/27/2022] Open
Abstract
Background Over five million joint replacements are performed across the world each year. Cobalt chrome (CoCr) components are used in most of these procedures. Some patients develop delayed-type hypersensitivity (DTH) responses to CoCr implants, resulting in tissue damage and revision surgery. DTH is unpredictable and genetic links have yet to be definitively established. Methods At a single site, we carried out an initial investigation to identify HLA alleles associated with development of DTH following metal-on-metal hip arthroplasty. We then recruited patients from other centres to train and validate an algorithm incorporating patient age, gender, HLA genotype, and blood metal concentrations to predict the development of DTH. Accuracy of the modelling was assessed using performance metrics including time-dependent receiver operator curves. Results Using next-generation sequencing, here we determine the HLA genotypes of 606 patients. 176 of these patients had experienced failure of their prostheses; the remaining 430 remain asymptomatic at a mean follow up of twelve years. We demonstrate that the development of DTH is associated with patient age, gender, the magnitude of metal exposure, and the presence of certain HLA class II alleles. We show that the predictive algorithm developed from this investigation performs to an accuracy suitable for clinical use, with weighted mean survival probability errors of 1.8% and 3.1% for pre-operative and post-operative models respectively. Conclusions The development of DTH following joint replacement appears to be determined by the interaction between implant wear and a patient's genotype. The algorithm described in this paper may improve implant selection and help direct patient surveillance following surgery. Further consideration should be given towards understanding patient-specific responses to different biomaterials.
Collapse
Affiliation(s)
- David J. Langton
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, England
| | - Rohan M. Bhalekar
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, England
| | | | | | | | - Matthew E. Nargol
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, England
| | - Nish Shyam
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, England
| | - Benedicte A. Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Susan Waller
- University Hospital of North Tees, Stockton, England
| | - Shonali Natu
- University Hospital of North Tees, Stockton, England
| | - Renee Ren
- Hospital for Special Surgery, New York, USA
| | | | | | | | | |
Collapse
|
4
|
Danquah BD, Röwer C, Opuni KM, El-Kased R, Frommholz D, Illges H, Koy C, Glocker MO. Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE). Mol Cell Proteomics 2019; 18:1543-1555. [PMID: 31147491 PMCID: PMC6683010 DOI: 10.1074/mcp.ra119.001429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Collapse
Affiliation(s)
- Bright D Danquah
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Claudia Röwer
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | - Reham El-Kased
- ¶Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - David Frommholz
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
| | - Harald Illges
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany;; **University of Applied Sciences Bonn-Rhein-Sieg, Institute for Functional Gene Analytics, Rheinbach, Germany
| | - Cornelia Koy
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Michael O Glocker
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
5
|
Kragh-Hansen U. Possible Mechanisms by Which Enzymatic Degradation of Human Serum Albumin Can Lead to Bioactive Peptides and Biomarkers. Front Mol Biosci 2018; 5:63. [PMID: 30038906 PMCID: PMC6046381 DOI: 10.3389/fmolb.2018.00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022] Open
Abstract
Partial enzymatic degradation of human serum albumin in vivo can lead to the generation of peptides with novel functions or to peptides that might serve as biomarkers for disease. In pathological conditions, biomarkers are possibly produced from the protein in the lysosomes and set free by cell death, or cell death could release acid endoproteases which produce biomarkers by degrading extracellular albumin. Alternatively, lysosomes or secretory granules can be stimulated to release enzymes which produce bioactive peptides from albumin. In physiological conditions, it is proposed that bioactive peptides can be made by enzymatic attack on the protein bound to the endosomal neonatal Fc receptor. The peptides formed could leave the cell, together with native albumin, by exocytosis. Thus, the receptor could have a new function in addition to saving albumin from degradation in the lysosomes. Large amounts of albumin are degraded every day, and this fact can compensate for the short in vivo half-lives of the bioactive peptides. One or more of the procedures outlined above could also apply to other plasma proteins or to structural proteins.
Collapse
|
6
|
Casadonte R, Longuespée R, Kriegsmann J, Kriegsmann M. MALDI IMS and Cancer Tissue Microarrays. Adv Cancer Res 2017; 134:173-200. [PMID: 28110650 DOI: 10.1016/bs.acr.2016.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) technology creates a link between the molecular assessment of numerous molecules and the morphological information about their special distribution. The application of MALDI IMS on formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMAs) is suitable for large-scale discovery analyses. Data acquired from FFPE TMA cancer samples in current research are very promising, and applications for routine diagnostics are under development. With the current rapid advances in both technology and applications, MALDI IMS technology is expected to enter into routine diagnostics soon. This chapter is intended to be comprehensive with respect to all aspects and considerations for the application of MALDI IMS on FFPE cancer TMAs with in-depth notes on technical aspects.
Collapse
Affiliation(s)
| | | | - J Kriegsmann
- Proteopath GmbH, Trier, Germany; Institute of Molecular Pathology, Trier, Germany; Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - M Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Parker CE, Borchers CH. Editorial. Methods 2015; 89:1-3. [PMID: 26552894 DOI: 10.1016/j.ymeth.2015.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Carol E Parker
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| |
Collapse
|