1
|
Galiani S, Reglinski K, Carravilla P, Barbotin A, Urbančič I, Ott J, Sehr J, Sezgin E, Schneider F, Waithe D, Hublitz P, Schliebs W, Erdmann R, Eggeling C. Diffusion and interaction dynamics of the cytosolic peroxisomal import receptor PEX5. BIOPHYSICAL REPORTS 2022; 2:None. [PMID: 36299769 PMCID: PMC9586885 DOI: 10.1016/j.bpr.2022.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Cellular functions rely on proper actions of organelles such as peroxisomes. These organelles rely on the import of proteins from the cytosol. The peroxisomal import receptor PEX5 takes up target proteins in the cytosol and transports them to the peroxisomal matrix. However, its cytosolic molecular interactions have so far not directly been disclosed. Here, we combined advanced optical microscopy and spectroscopy techniques such as fluorescence correlation spectroscopy and stimulated emission depletion microscopy with biochemical tools to present a detailed characterization of the cytosolic diffusion and interaction dynamics of PEX5. Among other features, we highlight a slow diffusion of PEX5, independent of aggregation or target binding, but associated with cytosolic interaction partners via its N-terminal domain. This sheds new light on the functionality of the receptor in the cytosol as well as highlighting the potential of using complementary microscopy tools to decipher molecular interactions in the cytosol by studying their diffusion dynamics.
Collapse
Affiliation(s)
- S. Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - K. Reglinski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Leibniz-Institute of Photonic Technologies e.V., Jena, Germany
- Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- University Hospital Jena, Jena, Germany
| | - P. Carravilla
- Leibniz-Institute of Photonic Technologies e.V., Jena, Germany
- Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - A. Barbotin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - I. Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - J. Ott
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - J. Sehr
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - E. Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - F. Schneider
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - D. Waithe
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- WIMM Centre for Computational Biology , MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - P. Hublitz
- WIMM Genome Engineering Services, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - W. Schliebs
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - R. Erdmann
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - C. Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Leibniz-Institute of Photonic Technologies e.V., Jena, Germany
- Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Jena, Germany
| |
Collapse
|
2
|
Valli J, Garcia-Burgos A, Rooney LM, Vale de Melo E Oliveira B, Duncan RR, Rickman C. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. J Biol Chem 2021; 297:100791. [PMID: 34015334 PMCID: PMC8246591 DOI: 10.1016/j.jbc.2021.100791] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Super-resolution microscopy has become an increasingly popular and robust tool across the life sciences to study minute cellular structures and processes. However, with the increasing number of available super-resolution techniques has come an increased complexity and burden of choice in planning imaging experiments. Choosing the right super-resolution technique to answer a given biological question is vital for understanding and interpreting biological relevance. This is an often-neglected and complex task that should take into account well-defined criteria (e.g., sample type, structure size, imaging requirements). Trade-offs in different imaging capabilities are inevitable; thus, many researchers still find it challenging to select the most suitable technique that will best answer their biological question. This review aims to provide an overview and clarify the concepts underlying the most commonly available super-resolution techniques as well as guide researchers through all aspects that should be considered before opting for a given technique.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom.
| | - Adrian Garcia-Burgos
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Liam M Rooney
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Beatriz Vale de Melo E Oliveira
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Rory R Duncan
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Colin Rickman
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13060861. [PMID: 34208080 PMCID: PMC8230741 DOI: 10.3390/pharmaceutics13060861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.
Collapse
|
4
|
Bernabé-Rubio M, Bosch-Fortea M, Alonso MA, Bernardino de la Serna J. Multi-dimensional and spatiotemporal correlative imaging at the plasma membrane of live cells to determine the continuum nano-to-micro scale lipid adaptation and collective motion. Methods 2021; 193:136-147. [PMID: 34126167 DOI: 10.1016/j.ymeth.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a specialized plasma membrane protrusion with important receptors for signalling pathways. In polarized epithelial cells, the primary cilium assembles after the midbody remnant (MBR) encounters the centrosome at the apical surface. The membrane surrounding the MBR, namely remnant-associated membrane patch (RAMP), once situated next to the centrosome, releases some of its lipid components to form a centrosome-associated membrane patch (CAMP) from which the ciliary membrane stems. The RAMP undergoes a spatiotemporal membrane refinement during the formation of the CAMP, which becomes highly enriched in condensed membranes with low lateral mobility. To better understand this process, we have developed a correlative imaging approach that yields quantitative information about the lipid lateral packing, its mobility and collective assembly at the plasma membrane at different spatial scales over time. Our work paves the way towards a quantitative understanding of the spatiotemporal lipid collective assembly at the plasma membrane as a functional determinant in cell biology and its direct correlation with the membrane physicochemical state. These findings allowed us to gain a deeper insight into the mechanisms behind the biogenesis of the ciliary membrane of polarized epithelial cells.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain; King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Minerva Bosch-Fortea
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain; Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, MRC-Research Complex at Harwell, Science and Technology Facilities Council, Harwell OX11 0QX, UK; National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; NIHR Imperial Biomedical Research Centre, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Chojnacki J, Eggeling C. Super-Resolution STED Microscopy-Based Mobility Studies of the Viral Env Protein at HIV-1 Assembly Sites of Fully Infected T-Cells. Viruses 2021; 13:608. [PMID: 33918253 PMCID: PMC8067239 DOI: 10.3390/v13040608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
The ongoing threat of human immunodeficiency virus (HIV-1) requires continued, detailed investigations of its replication cycle, especially when combined with the most physiologically relevant, fully infectious model systems. Here, we demonstrate the application of the combination of stimulated emission depletion (STED) super-resolution microscopy with beam-scanning fluorescence correlation spectroscopy (sSTED-FCS) as a powerful tool for the interrogation of the molecular dynamics of HIV-1 virus assembly on the cell plasma membrane in the context of a fully infectious virus. In this process, HIV-1 envelope glycoprotein (Env) becomes incorporated into the assembling virus by interacting with the nascent Gag structural protein lattice. Molecular dynamics measurements at these distinct cell surface sites require a guiding strategy, for which we have used a two-colour implementation of sSTED-FCS to simultaneously target individual HIV-1 assembly sites via the aggregated Gag signal. We then compare the molecular mobility of Env proteins at the inside and outside of the virus assembly area. Env mobility was shown to be highly reduced at the assembly sites, highlighting the distinct trapping of Env as well as the usefulness of our methodological approach to study the molecular mobility of specifically targeted sites at the plasma membrane, even under high-biosafety conditions.
Collapse
Affiliation(s)
- Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Ctra. de Canyet s/n, Badalona, 08916 Barcelona, Spain
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
6
|
Structure, Formation, and Biological Interactions of Supported Lipid Bilayers (SLB) Incorporating Lipopolysaccharide. COATINGS 2020. [DOI: 10.3390/coatings10100981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomimetic membrane systems play a crucial role in the field of biosensor engineering. Over the years, significant progress has been achieved creating artificial membranes by various strategies from vesicle fusion to Langmuir transfer approaches to meet an ever-growing demand for supported lipid bilayers on various substrates such as glass, mica, gold, polymer cushions, and many more. This paper reviews the diversity seen in the preparation of biologically relevant model lipid membranes which includes monolayers and bilayers of phospholipid and other crucial components such as proteins, characterization techniques, changes in the physical properties of the membranes during molecular interactions and the dynamics of the lipid membrane with biologically active molecules with special emphasis on lipopolysaccharides (LPS).
Collapse
|
7
|
Barbotin A, Urbančič I, Galiani S, Eggeling C, Booth M. Background Reduction in STED-FCS Using a Bivortex Phase Mask. ACS PHOTONICS 2020; 7:1742-1753. [PMID: 32685609 PMCID: PMC7366504 DOI: 10.1021/acsphotonics.0c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a valuable tool to study the molecular dynamics in living cells. When used together with a super-resolution stimulated emission depletion (STED) microscope, STED-FCS can measure diffusion processes on the nanoscale in living cells. In two-dimensional (2D) systems like the cellular plasma membrane, a ring-shaped depletion focus is most commonly used to increase the lateral resolution, leading to more than 25-fold decrease in the observation volume, reaching the relevant scale of supramolecular arrangements. However, STED-FCS faces severe limitations when measuring diffusion in three dimensions (3D), largely due to the spurious background contributions from undepleted areas of the excitation focus that reduce the signal quality and ultimately limit the resolution. In this paper, we investigate how different STED confinement modes can mitigate this issue. By simulations as well as experiments with fluorescent probes in solution and in cells, we demonstrate that the coherent-hybrid (CH) depletion pattern created by a bivortex phase mask reduces background most efficiently and thus provides superior signal quality under comparable reduction of the observation volume. Featuring also the highest robustness to common optical aberrations, CH-STED can be considered the method of choice for reliable STED-FCS-based investigations of 3D diffusion on the subdiffraction scale.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Iztok Urbančič
- MRC
Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
- “Jožef
Stefan” Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Silvia Galiani
- MRC
Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
- Wolfson
Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC
Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
- Wolfson
Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
- Institute
of Applied Optics and Biophysics, Friedrich-Schiller-University
Jena, Max-Wien Platz
4, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Martin Booth
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
8
|
Barbotin A, Urbančič I, Galiani S, Eggeling C, Booth M, Sezgin E. z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics. Biophys J 2020; 118:2448-2457. [PMID: 32359408 PMCID: PMC7231928 DOI: 10.1016/j.bpj.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Super-resolution stimulated emission depletion (STED) microcopy provides optical resolution beyond the diffraction limit. The resolution can be increased laterally (xy) or axially (z). Two-dimensional STED has been extensively used to elucidate the nanoscale membrane structure and dynamics via imaging or combined with spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and spectral imaging. On the contrary, z-STED has not been used in this context. Here, we show that a combination of z-STED with FCS or spectral imaging enables us to see previously unobservable aspects of cellular membranes. We show that thanks to an axial resolution of ∼100 nm, z-STED can be used to distinguish axially close-by membranes, early endocytic vesicles, or tubular membrane structures. Combination of z-STED with FCS and spectral imaging showed diffusion dynamics and lipid organization in these structures, respectively.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Silvia Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology e.V., Jena, Germany
| | - Martin Booth
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
9
|
Beckers D, Urbancic D, Sezgin E. Impact of Nanoscale Hindrances on the Relationship between Lipid Packing and Diffusion in Model Membranes. J Phys Chem B 2020; 124:1487-1494. [PMID: 32026676 PMCID: PMC7050011 DOI: 10.1021/acs.jpcb.0c00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Membrane
models have allowed for precise study of the plasma membrane’s
biophysical properties, helping to unravel both structural and dynamic
motifs within cell biology. Freestanding and supported bilayer systems
are popular models to reconstitute membrane-related processes. Although
it is well-known that each have their advantages and limitations,
comprehensive comparison of their biophysical properties is still
lacking. Here, we compare the diffusion and lipid packing in giant
unilamellar vesicles, planar and spherical supported membranes, and
cell-derived giant plasma membrane vesicles. We apply florescence
correlation spectroscopy (FCS), spectral imaging, and super-resolution
stimulated emission depletion FCS to study the diffusivity, lipid
packing, and nanoscale architecture of these membrane systems, respectively.
Our data show that lipid packing and diffusivity is tightly correlated
in freestanding bilayers. However, nanoscale interactions in the supported
bilayers cause deviation from this correlation. These data are essential
to develop accurate theoretical models of the plasma membrane and
will serve as a guideline for suitable model selection in future studies
to reconstitute biological processes.
Collapse
Affiliation(s)
- Daniel Beckers
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K
| | - Dunja Urbancic
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Faculty of Pharmacy , University of Ljubljana , Askerceva cesta 7 , 1000 Ljubljana , Slovenia
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Science for Life Laboratory, Department of Women's and Children's Health , Karolinska Institutet , Solna , Sweden
| |
Collapse
|
10
|
Stanly TA, Fritzsche M, Banerji S, Shrestha D, Schneider F, Eggeling C, Jackson DG. The cortical actin network regulates avidity-dependent binding of hyaluronan by the lymphatic vessel endothelial receptor LYVE-1. J Biol Chem 2020; 295:5036-5050. [PMID: 32034091 PMCID: PMC7152780 DOI: 10.1074/jbc.ra119.011992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Tess A Stanly
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,Kennedy Institute for Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Suneale Banerji
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom .,Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
| | - David G Jackson
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
11
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
12
|
Favard C, Chojnacki J, Merida P, Yandrapalli N, Mak J, Eggeling C, Muriaux D. HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly. SCIENCE ADVANCES 2019; 5:eaaw8651. [PMID: 31616784 PMCID: PMC6774721 DOI: 10.1126/sciadv.aaw8651] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
HIV-1 Gag protein assembles at the plasma membrane of infected cells for viral particle formation. Gag targets lipids, mainly PI(4,5)P2, at the inner leaflet of this membrane. Here, we address the question whether Gag is able to trap specifically PI(4,5)P2 or other lipids during HIV-1 assembly in the host CD4+ T lymphocytes. Lipid dynamics within and away from HIV-1 assembly sites were determined using super-resolution microscopy coupled with scanning fluorescence correlation spectroscopy in living cells. Analysis of HIV-1-infected cells revealed that, upon assembly, HIV-1 is able to specifically trap PI(4,5)P2 and cholesterol, but not phosphatidylethanolamine or sphingomyelin. Furthermore, our data showed that Gag is the main driving force to restrict the mobility of PI(4,5)P2 and cholesterol at the cell plasma membrane. This is the first direct evidence highlighting that HIV-1 creates its own specific lipid environment by selectively recruiting PI(4,5)P2 and cholesterol as a membrane nanoplatform for virus assembly.
Collapse
Affiliation(s)
- C. Favard
- Montpellier Infectious Disease Research Institute, IRIM, CNRS–Université Montpellier, 1919, route de Mende, 34293 Montpellier Cedex, France
| | - J. Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Ctra. de Canyet s/n, Badalona, 08916 Barcelona, Spain
| | - P. Merida
- Montpellier Infectious Disease Research Institute, IRIM, CNRS–Université Montpellier, 1919, route de Mende, 34293 Montpellier Cedex, France
| | - N. Yandrapalli
- Montpellier Infectious Disease Research Institute, IRIM, CNRS–Université Montpellier, 1919, route de Mende, 34293 Montpellier Cedex, France
| | - J. Mak
- Institute for Glycomics, Griffith University Gold Coast, Southport, QLD, Australia
| | - C. Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - D. Muriaux
- Montpellier Infectious Disease Research Institute, IRIM, CNRS–Université Montpellier, 1919, route de Mende, 34293 Montpellier Cedex, France
| |
Collapse
|
13
|
Abstract
STimulated emission depletion (STED) nanoscopy has been proposed to extend greatly our capability of using light to study a variety of biological problems with nanometer-scale resolution. However, in practice the unwanted background noise degrades the STED image quality and precludes quantitative analysis. Here, we discuss the underlying sources of the background noise in STED images, and review current approaches to alleviate this problem, such as time-gating, anti-Stokes excitation removal, and off-focus incomplete depletion suppression. Progress in correcting uncorrelated background photons in fluorescence correlation spectroscopy combined with STED (STED-FCS) will also be discussed.
Collapse
Affiliation(s)
- Ye Ma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.,Departments of Biophysics and Biophysical Chemistry, Biophysics, Johns Hopkins University, Baltimore, MD, United States of America.,Howard Hughes Medical Institute, Baltimore, MD, United States of America.,Author to whom any correspondence should be addressed
| |
Collapse
|
14
|
Sezgin E, Schneider F, Galiani S, Urbančič I, Waithe D, Lagerholm BC, Eggeling C. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS. Nat Protoc 2019; 14:1054-1083. [PMID: 30842616 DOI: 10.1038/s41596-019-0127-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022]
Abstract
Super-resolution microscopy techniques enable optical imaging in live cells with unprecedented spatial resolution. They unfortunately lack the temporal resolution required to directly investigate cellular dynamics at scales sufficient to measure molecular diffusion. These fast time scales are, on the other hand, routinely accessible by spectroscopic techniques such as fluorescence correlation spectroscopy (FCS). To enable the direct investigation of fast dynamics at the relevant spatial scales, FCS has been combined with super-resolution stimulated emission depletion (STED) microscopy. STED-FCS has been applied in point or scanning mode to reveal nanoscale diffusion behavior of molecules in live cells. In this protocol, we describe the technical details of performing point STED-FCS (pSTED-FCS) and scanning STED-FCS (sSTED-FCS) measurements, from calibration and sample preparation to data acquisition and analysis. We give particular emphasis to 2D diffusion dynamics in cellular membranes, using molecules tagged with organic fluorophores. These measurements can be accomplished within 4-6 h by those proficient in fluorescence imaging.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Silvia Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Solid State Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Dominic Waithe
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Jena, Germany.
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology e.V., Jena, Germany.
| |
Collapse
|
15
|
Sarkar P, Chattopadhyay A. Exploring membrane organization at varying spatiotemporal resolutions utilizing fluorescence-based approaches: implications in membrane biology. Phys Chem Chem Phys 2019; 21:11554-11563. [DOI: 10.1039/c9cp02087j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Representative experimental approaches based on dynamic fluorescence microscopy to analyze organization and dynamics of membrane lipids and proteins.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
| | | |
Collapse
|
16
|
Wijesooriya CS, Nyamekye CKA, Smith EA. Optical Imaging of the Nanoscale Structure and Dynamics of Biological Membranes. Anal Chem 2018; 91:425-440. [DOI: 10.1021/acs.analchem.8b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Charles K. A. Nyamekye
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
17
|
Jenkins E, Santos AM, O'Brien-Ball C, Felce JH, Wilcock MJ, Hatherley D, Dustin ML, Davis SJ, Eggeling C, Sezgin E. Reconstitution of immune cell interactions in free-standing membranes. J Cell Sci 2018; 132:jcs219709. [PMID: 30209137 PMCID: PMC6398472 DOI: 10.1242/jcs.219709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
The spatiotemporal regulation of signalling proteins at the contacts formed between immune cells and their targets determines how and when immune responses begin and end. Therapeutic control of immune responses therefore relies on thorough elucidation of the molecular processes occurring at these interfaces. However, the detailed investigation of each component's contribution to the formation and regulation of the contact is hampered by the complexities of cell composition and architecture. Moreover, the transient nature of these interactions creates additional challenges, especially in the use of advanced imaging technology. One approach that circumvents these problems is to establish in vitro systems that faithfully mimic immune cell interactions, but allow complexity to be 'dialled-in' as needed. Here, we present an in vitro system that makes use of synthetic vesicles that mimic important aspects of immune cell surfaces. Using this system, we began to explore the spatial distribution of signalling molecules (receptors, kinases and phosphatases) and how this changes during the initiation of signalling. The GUV/cell system presented here is expected to be widely applicable.
Collapse
Affiliation(s)
- Edward Jenkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Caitlin O'Brien-Ball
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Martin J Wilcock
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Deborah Hatherley
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Simon J Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Institute of Applied Optics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
18
|
Urbančič I, Brun J, Shrestha D, Waithe D, Eggeling C, Chojnacki J. Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles. Viruses 2018; 10:v10080415. [PMID: 30096847 PMCID: PMC6116177 DOI: 10.3390/v10080415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.
Collapse
Affiliation(s)
- Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- "Jožef Stefan" Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
| | - Juliane Brun
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Dilip Shrestha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany.
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Jakub Chojnacki
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
19
|
Roobala C, Ilanila IP, Basu JK. Applications of STED fluorescence nanoscopy in unravelling nanoscale structure and dynamics of biological systems. J Biosci 2018; 43:471-484. [PMID: 30002267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescence microscopy, especially confocal microscopy, has revolutionized the field of biological imaging. Breaking the optical diffraction barrier of conventional light microscopy, through the advent of super-resolution microscopy, has ushered in the potential for a second revolution through unprecedented insight into nanoscale structure and dynamics in biological systems. Stimulated emission depletion (STED) microscopy is one such super-resolution microscopy technique which provides real-time enhanced-resolution imaging capabilities. In addition, it can be easily integrated with well-established fluorescence-based techniques such as fluorescence correlation spectroscopy (FCS) in order to capture the structure of cellular membranes at the nanoscale with high temporal resolution. In this review, we discuss the theory of STED and different modalities of operation in order to achieve the best resolution. Various applications of this technique in cell imaging, especially that of neuronal cell imaging, are discussed as well as examples of application of STED imaging in unravelling structure formation on biological membranes. Finally, we have discussed examples from some of our recent studies on nanoscale structure and dynamics of lipids in model membranes, due to interaction with proteins, as revealed by combination of STED and FCS techniques.
Collapse
Affiliation(s)
- C Roobala
- Department of Physics, Indian Institute of Science, Bengaluru 560 012, India
| | | | | |
Collapse
|
20
|
Applications of STED fluorescence nanoscopy in unravelling nanoscale structure and dynamics of biological systems. J Biosci 2018. [DOI: 10.1007/s12038-018-9764-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Wang R, Brustlein S, Mailfert S, Fabre R, Fallet M, Sivankutty S, Rigneault H, Marguet D. A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses. Methods 2018; 140-141:212-222. [DOI: 10.1016/j.ymeth.2018.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/22/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
|
22
|
Sarangi NK, Roobala C, Basu JK. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode. Methods 2018; 140-141:198-211. [DOI: 10.1016/j.ymeth.2017.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
|
23
|
Garcia E, Bernardino de la Serna J. Dissecting single-cell molecular spatiotemporal mobility and clustering at focal adhesions in polarised cells by fluorescence fluctuation spectroscopy methods. Methods 2018; 140-141:85-96. [PMID: 29605734 DOI: 10.1016/j.ymeth.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022] Open
Abstract
Quantitative fluorescence fluctuation spectroscopy from optical microscopy datasets is a very powerful tool to resolve multiple spatiotemporal cellular and subcellular processes at the molecular level. In particular, raster image correlation spectroscopy (RICS) and number and brightness analyses (N&B) yield molecular mobility and clustering dynamic information extracted from real-time cellular processes. This quantitative information can be inferred in a highly flexible and detailed manner, i.e. 1) at the localisation level: from full-frame datasets and multiple regions of interest within; and 2) at the temporal level: not only from full-frame and multiple regions, but also intermediate temporal events. Here we build on previous research in deciphering the molecular dynamics of paxillin, a main component of focal adhesions. Cells use focal adhesions to attach to the extracellular matrix and interact with their local environment. Through focal adhesions and other adhesion structures, cells sense their local environment and respond accordingly; due to this continuous communication, these structures can be highly dynamic depending on the extracellular characteristics. By using a previously well-characterised model like paxillin, we examine the powerful sensitivity and some limitations of RICS and N&B analyses. We show that cells upon contact to different surfaces show differential self-assembly dynamics in terms of molecular diffusion and oligomerisation. In addition, single-cell studies show that these dynamics change gradually following an antero-posterior gradient.
Collapse
Affiliation(s)
- Esther Garcia
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell-Oxford, UK
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell-Oxford, UK; Department of Physics, King's College London, London, UK.
| |
Collapse
|
24
|
Chelladurai R, Debnath K, Jana NR, Basu JK. Nanoscale Heterogeneities Drive Enhanced Binding and Anomalous Diffusion of Nanoparticles in Model Biomembranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1691-1699. [PMID: 29320202 DOI: 10.1021/acs.langmuir.7b04003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interaction of functional nanoparticles with cells and model biomembranes has been widely studied to evaluate the effectiveness of the particles as potential drug delivery vehicles and bioimaging labels as well as in understanding nanoparticle cytotoxicity effects. Charged nanoparticles, in particular, with tunable surface charge have been found to be effective in targeting cellular membranes as well as the subcellular matrix. However, a microscopic understanding of the underlying physical principles that govern nanoparticle binding, uptake, or diffusion on cells is lacking. Here, we report the first experimental studies of nanoparticle diffusion on model biomembranes and correlate this to the existence of nanoscale dynamics and structural heterogeneities using super-resolution stimulated emission depletion (STED) microscopy. Using confocal and STED microscopy coupled with fluorescence correlation spectroscopy (FCS), we provide novel insight on why these nanoparticles show enhanced binding on two-component lipid bilayers as compared to single-component membranes and how binding and diffusion is correlated to subdiffraction nanoscale dynamics and structure. The enhanced binding is also dictated, in part, by the presence of structural and dynamic heterogeneity, as revealed by STED-FCS studies, which could potentially be used to understand enhanced nanoparticle binding in raft-like domains in cell membranes. In addition, we also observe a clear correlation between the enhanced nanoparticle diffusion on membranes and the extent of membrane penetration by the nanoparticles. Our results not only have a significant impact on our understanding of nanoparticle binding and uptake as well as diffusion in cell and biomembranes, but have very strong implications for uptake mechanisms and diffusion of other biomolecules, like proteins on cell membranes and their connections to functional membrane nanoscale platform.
Collapse
Affiliation(s)
- Roobala Chelladurai
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Koushik Debnath
- Centre for Advanced Materials, Indian Association for the Cultivation of Sciences , Kolkata 700032, India
| | - Nikhil R Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Sciences , Kolkata 700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
25
|
Jang HS. The Diverse Range of Possible Cell Membrane Interactions with Substrates: Drug Delivery, Interfaces and Mobility. Molecules 2017; 22:molecules22122197. [PMID: 29232886 PMCID: PMC6149826 DOI: 10.3390/molecules22122197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The cell membrane has gained significant attention as a platform for the development of bio-inspired nanodevices due to its immune-evasive functionalities and copious bio-analogs. This review will examine several uses of cell membranes such as (i) therapeutic delivery carriers with or without substrates (i.e., nanoparticles and artificial polymers) that have enhanced efficiency regarding copious cargo loading and controlled release, (ii) exploiting nano-bio interfaces in membrane-coated particles from the macro- to the nanoscales, which would help resolve the biomedical issues involved in biological interfacing in the body, and (iii) its effects on the mobility of bio-moieties such as lipids and/or proteins in cell membranes, as discussed from a biophysical perspective. We anticipate that this review will influence both the development of novel anti-phagocytic delivery cargo and address biophysical problems in soft and complex cell membrane.
Collapse
Affiliation(s)
- Hyun-Sook Jang
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea.
| |
Collapse
|
26
|
Zhang X, Sisamakis E, Sozanski K, Holyst R. Nanoscopic Approach to Quantification of Equilibrium and Rate Constants of Complex Formation at Single-Molecule Level. J Phys Chem Lett 2017; 8:5785-5791. [PMID: 29131951 DOI: 10.1021/acs.jpclett.7b02742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Equilibrium and rate constants are key descriptors of complex-formation processes in a variety of chemical and biological reactions. However, these parameters are difficult to quantify, especially in the locally confined, heterogeneous, and dynamically changing living matter. Herein, we address this challenge by combining stimulated emission depletion (STED) nanoscopy with fluorescence correlation spectroscopy (FCS). STED reduces the length-scale of observation to tens of nanometres (2D)/attoliters (3D) and the time-scale to microseconds, with direct, gradual control. This allows one to distinguish diffusional and binding processes of complex-formation, even at reaction rates higher by an order of magnitude than in confocal FCS. We provide analytical autocorrelation formulas for probes undergoing diffusion-reaction processes under STED condition. We support the theoretical analysis of experimental STED-FCS data on a model system of dye-micelle, where we retrieve the equilibrium and rates constants. Our work paves a promising way toward quantitative characterization of molecular interactions in vivo.
Collapse
Affiliation(s)
- Xuzhu Zhang
- Department of Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw, Poland
| | | | - Krzysztof Sozanski
- Department of Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw, Poland
| | - Robert Holyst
- Department of Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw, Poland
| |
Collapse
|
27
|
Chojnacki J, Waithe D, Carravilla P, Huarte N, Galiani S, Enderlein J, Eggeling C. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat Commun 2017; 8:545. [PMID: 28916807 PMCID: PMC5601426 DOI: 10.1038/s41467-017-00515-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/30/2017] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembles as immature particles, which require the proteolytic cleavage of structural polyprotein Gag and the clustering of envelope glycoprotein Env for infectivity. The details of mechanisms underlying Env clustering remain unknown. Here, we determine molecular dynamics of Env on the surface of individual HIV-1 particles using scanning fluorescence correlation spectroscopy on a super-resolution STED microscope. We find that Env undergoes a maturation-induced increase in mobility, highlighting diffusion as one cause for Env clustering. This mobility increase is dependent on Gag-interacting Env tail but not on changes in viral envelope lipid order. Diffusion of Env and other envelope incorporated proteins in mature HIV-1 is two orders of magnitude slower than in the plasma membrane, indicating that HIV-1 envelope is intrinsically a low mobility environment, mainly due to its general high lipid order. Our results provide insights into dynamic properties of proteins on the surface of individual virus particles.To become infectious, HIV-1 particles undergo a maturation process involving the clustering of envelope glycoprotein Env. Here, Chojnacki et al. employ super-resolution STED-FCS microscopy to study dynamics of Env molecules on HIV-1 particles and show that Env undergoes a maturation-induced increase in mobility.
Collapse
Affiliation(s)
- Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK.
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Pablo Carravilla
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Nerea Huarte
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Jörg Enderlein
- Third Institute of Physics, Georg August University, 37077, Göttingen, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK.
| |
Collapse
|
28
|
C R, Basu JK. Emergence of compositionally tunable nanoscale dynamical heterogeneity in model binary lipid biomembranes. SOFT MATTER 2017; 13:4598-4606. [PMID: 28604915 DOI: 10.1039/c7sm00581d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the existence of nanoscale dynamical heterogeneity in biological membranes has been suggested to act as an active functional platform for enabling various cellular processes like signal transduction and viral or bacterial entry, it has been extremely difficult to detect the existence of such domains. Model lipid bilayer membranes have been widely used to detect such dynamical heterogeneity in order to avoid complications arising from the compositional heterogeneity of cellular membranes. However, even in model biological membranes the issue of nanoscale lipid dynamics has remained controversial and unresolved due to the difficulty of detecting the existence of such dynamical heterogeneity on the scale of 10-300 nm. Here we report direct evidence of nanoscale lipid dynamical heterogeneity in model binary lipid bilayer membranes using a combination of super-resolution stimulated emission depletion (STED) microscopy and fluorescence correlation spectroscopy (FCS). We control the phase behavior of the lipid bilayers by varying their composition and discuss how this leads to the emergence of dynamical lipid domains on the scale of 80-150 nm, which is also dependent on the lipid phase in which such dynamics are observed. Notably, our work shows that the presence of cholesterol is not required for the existence of such domains even in fluid like bilayers, as has been widely believed, and specifies the minimal conditions required for the emergence of such dynamical heterogeneity in cellular membranes. Our work will thus not only be of great significance towards understanding the nanoscale dynamic organizing principles of cellular membranes but could also be useful in understanding the dynamics of related soft matter systems and nanoparticle-cell membrane interactions.
Collapse
Affiliation(s)
- Roobala C
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
29
|
Sezgin E. Super-resolution optical microscopy for studying membrane structure and dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:273001. [PMID: 28481213 PMCID: PMC5952331 DOI: 10.1088/1361-648x/aa7185] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS, United Kingdom
| |
Collapse
|
30
|
Lanzanò L, Scipioni L, Di Bona M, Bianchini P, Bizzarri R, Cardarelli F, Diaspro A, Vicidomini G. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat Commun 2017; 8:65. [PMID: 28684735 PMCID: PMC5500520 DOI: 10.1038/s41467-017-00117-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/01/2017] [Indexed: 01/12/2023] Open
Abstract
The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells. The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.
Collapse
Affiliation(s)
- Luca Lanzanò
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.
| | - Lorenzo Scipioni
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.,Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, 16145, Italy
| | - Melody Di Bona
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.,Department of Physics, University of Genoa, via Dodecaneso 33, Genoa, 16146, Italy
| | - Paolo Bianchini
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.,Nikon Imaging Center, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy
| | - Ranieri Bizzarri
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.,NEST, Scuola Normale Superiore and Istituto Nanoscienze, CNR (NANO-CNR) piazza San Silvestro 12, Pisa, 56127, Italy
| | - Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, piazza San Silvestro 12, Pisa, 56127, Italy.,NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Alberto Diaspro
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy. .,Department of Physics, University of Genoa, via Dodecaneso 33, Genoa, 16146, Italy. .,Nikon Imaging Center, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genoa, 16163, Italy.
| |
Collapse
|
31
|
Schneider F, Waithe D, Clausen MP, Galiani S, Koller T, Ozhan G, Eggeling C, Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol Biol Cell 2017; 28:1507-1518. [PMID: 28404749 DOI: 10.1101/076109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 05/22/2023] Open
Abstract
Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signaling and are suggested to be strongly associated with the actin cytoskeleton. Here we use superresolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live-cell plasma membrane and in actin cytoskeleton-free, cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids is abolished in the GPMVs, whereas transient nanodomain incorporation of ganglioside lipid GM1 is apparent in both the live-cell membrane and GPMVs. For GPI-APs, we detect two molecular pools in living cells; one pool shows high mobility with transient incorporation into nanodomains, and the other pool forms immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules and highlight a powerful experimental approach to decipher specific influences on molecular plasma membrane dynamics.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Thomas Koller
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
- Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Christian Eggeling
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| |
Collapse
|
32
|
Schneider F, Waithe D, Clausen MP, Galiani S, Koller T, Ozhan G, Eggeling C, Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol Biol Cell 2017; 28:1507-1518. [PMID: 28404749 PMCID: PMC5449149 DOI: 10.1091/mbc.e16-07-0536] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/04/2023] Open
Abstract
Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signaling and are suggested to be strongly associated with the actin cytoskeleton. Here we use superresolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live-cell plasma membrane and in actin cytoskeleton-free, cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids is abolished in the GPMVs, whereas transient nanodomain incorporation of ganglioside lipid GM1 is apparent in both the live-cell membrane and GPMVs. For GPI-APs, we detect two molecular pools in living cells; one pool shows high mobility with transient incorporation into nanodomains, and the other pool forms immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules and highlight a powerful experimental approach to decipher specific influences on molecular plasma membrane dynamics.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Thomas Koller
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
- Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Christian Eggeling
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| |
Collapse
|
33
|
Schneider F, Ruhlandt D, Gregor I, Enderlein J, Chizhik AI. Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity. J Phys Chem Lett 2017; 8:1472-1475. [PMID: 28296418 DOI: 10.1021/acs.jpclett.7b00422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Precise knowledge of the quantum yield is important for many fluorescence-spectroscopic techniques, for example, for Förster resonance energy transfer. However, to measure it for emitters in a complex environment and at low concentrations is far from being trivial. Using a plasmonic nanocavity, we measure the absolute quantum yield value of lipid-conjugated dyes incorporated into a supported lipid bilayer. We show that for both hydrophobic and hydrophilic molecules the quantum yield of dyes inside the lipid bilayer strongly differs from its value in aqueous solution. This finding is of particular importance for all fluorescence-spectroscopic studies involving lipid bilayers, such as protein-protein or protein-lipid interactions in membranes or direct fluorescence-spectroscopic measurements of membrane physical properties.
Collapse
Affiliation(s)
- Falk Schneider
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Daja Ruhlandt
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ingo Gregor
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jörg Enderlein
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Alexey I Chizhik
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Lagerholm BC, Andrade DM, Clausen MP, Eggeling C. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:063001. [PMID: 28458397 PMCID: PMC5390782 DOI: 10.1088/1361-6463/aa519e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 05/06/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µm2 s-1, in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1-10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of ≈0.7-1.0 µm2 s-1, and a compartment size of about 100-150 nm.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Débora M Andrade
- Centre for Neural Circuits and Behaviour, University of Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | - Mathias P Clausen
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Christian Eggeling
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
35
|
Li X, Xing J, Qiu Z, He Q, Lin J. Quantification of Membrane Protein Dynamics and Interactions in Plant Cells by Fluorescence Correlation Spectroscopy. MOLECULAR PLANT 2016; 9:1229-1239. [PMID: 27381442 DOI: 10.1016/j.molp.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 05/25/2023]
Abstract
Deciphering the dynamics of protein and lipid molecules on appropriate spatial and temporal scales may shed light on protein function and membrane organization. However, traditional bulk approaches cannot unambiguously quantify the extremely diverse mobility and interactions of proteins in living cells. Fluorescence correlation spectroscopy (FCS) is a powerful technique to describe events that occur at the single-molecule level and on the nanosecond to second timescales; therefore, FCS can provide data on the heterogeneous organization of membrane systems. FCS can also be combined with other microscopy techniques, such as super-resolution techniques. More importantly, FCS is minimally invasive, which makes it an ideal approach to detect the heterogeneous distribution and dynamics of key proteins during development. In this review, we give a brief introduction about the development of FCS and summarize the significant contributions of FCS in understanding the organization of plant cell membranes and the dynamics and interactions of membrane proteins. We also discuss the potential applications of this technique in plant biology.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zongbo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qihua He
- The Health Science Center, Peking University, Beijing 100191, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Waithe D, Clausen MP, Sezgin E, Eggeling C. FoCuS-point: software for STED fluorescence correlation and time-gated single photon counting. Bioinformatics 2016; 32:958-60. [PMID: 26589275 PMCID: PMC5939892 DOI: 10.1093/bioinformatics/btv687] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/04/2022] Open
Abstract
MOTIVATION Fluorescence Correlation Spectroscopy (FCS) is a popular tool for measuring molecular mobility and how mobility relates to molecular interaction dynamics and bioactivity in living cells. The FCS technique has been significantly advanced by its combination with super-resolution STED microscopy (STED-FCS). Specifically, the use of gated detection has shown great potential for enhancing STED-FCS, but has also created a demand for software which is efficient and also implements the latest algorithms. Prior to this study, no open software has been available which would allow practical time-gating and correlation of point data derived from STED-FCS experiments. RESULTS The product of this study is a piece of stand-alone software called FoCuS-point. FoCuS-point utilizes advanced time-correlated single-photon counting (TCSPC) correlation algorithms along with time-gated filtering and innovative data visualization. The software has been designed to be highly user-friendly and is tailored to handle batches of data with tools designed to process files in bulk. FoCuS-point also includes advanced fitting algorithms which allow the parameters of the correlation curves and thus the kinetics of diffusion to be established quickly and efficiently. AVAILABILITY AND IMPLEMENTATION FoCuS-point is written in python and is available through the github repository: https://github.com/dwaithe/FCS_point_correlator Furthermore, compiled versions of the code are available as executables which can be run directly in Linux, Windows and Mac OSX operating systems. CONTACT dominic.waithe@imm.ox.ac.uk.
Collapse
Affiliation(s)
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- Wolfson Imaging Centre and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| |
Collapse
|
37
|
Sezgin E, Can FB, Schneider F, Clausen MP, Galiani S, Stanly TA, Waithe D, Colaco A, Honigmann A, Wüstner D, Platt F, Eggeling C. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J Lipid Res 2015; 57:299-309. [PMID: 26701325 DOI: 10.1194/jlr.m065326] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Fatma Betul Can
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Tess A Stanly
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Dominic Waithe
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Alexandria Colaco
- Department of Pharmacology, University of Oxford, OX13QT Oxford, United Kingdom
| | - Alf Honigmann
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Frances Platt
- Department of Pharmacology, University of Oxford, OX13QT Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| |
Collapse
|
38
|
Knight AE, Peckham M. Recent innovations in super-resolution microscopy. Methods 2015; 88:1-2. [PMID: 26255962 DOI: 10.1016/j.ymeth.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Alex E Knight
- Biotechnology Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Michelle Peckham
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|