1
|
Singh A, Patel SS. Quantitative methods to study helicase, DNA polymerase, and exonuclease coupling during DNA replication. Methods Enzymol 2022; 672:75-102. [PMID: 35934486 PMCID: PMC9933136 DOI: 10.1016/bs.mie.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genome replication is accomplished by highly regulated activities of enzymes in a multi-protein complex called the replisome. Two major enzymes, DNA polymerase and helicase, catalyze continuous DNA synthesis on the leading strand of the parental DNA duplex while the lagging strand is synthesized discontinuously. The helicase and DNA polymerase on their own are catalytically inefficient and weak motors for unwinding/replicating double-stranded DNA. However, when a helicase and DNA polymerase are functionally and physically coupled, they catalyze fast and highly processive leading strand DNA synthesis. DNA polymerase has a 3'-5' exonuclease activity, which removes nucleotides misincorporated in the nascent DNA. DNA synthesis kinetics, processivity, and accuracy are governed by the interplay of the helicase, DNA polymerase, and exonuclease activities within the replisome. This chapter describes quantitative biochemical and biophysical methods to study the coupling of these three critical activities during DNA replication. The methods include real-time quantitation of kinetics of DNA unwinding-synthesis by a coupled helicase-DNA polymerase complex, a 2-aminopurine fluorescence-based assay to map the precise positions of helicase and DNA polymerase with respect to the replication fork junction, and a radiometric assay to study the coupling of DNA polymerase, exonuclease, and helicase activities during processive leading strand DNA synthesis. These methods are presented here with bacteriophage T7 replication proteins as an example but can be applied to other systems with appropriate modifications.
Collapse
|
2
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, Fiorini F, Kanaan J, Le Hir H, Allemand J, Bensimon D, Croquette V. A mechanistic study of helicases with magnetic traps. Protein Sci 2017; 26:1314-1336. [PMID: 28474797 PMCID: PMC5477542 DOI: 10.1002/pro.3187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
Helicases are a broad family of enzymes that separate nucleic acid double strand structures (DNA/DNA, DNA/RNA, or RNA/RNA) and thus are essential to DNA replication and the maintenance of nucleic acid integrity. We review the picture that has emerged from single molecule studies of the mechanisms of DNA and RNA helicases and their interactions with other proteins. Many features have been uncovered by these studies that were obscured by bulk studies, such as DNA strands switching, mechanical (rather than biochemical) coupling between helicases and polymerases, helicase-induced re-hybridization and stalled fork rescue.
Collapse
Affiliation(s)
- Samar Hodeib
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Saurabh Raj
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Maria Manosas
- Departament de Física FonamentalFacultat de Física, Universitat de BarcelonaBarcelona08028Spain
- CIBER‐BBN de BioingenieriaBiomateriales y Nanomedicina, Instituto de Sanidad Carlos IIIMadridSpain
| | - Weiting Zhang
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Debjani Bagchi
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
- Present address: Physics DepartmentFaculty of Science, The M.S. University of BarodaVadodaraGujarat390002India
| | - Bertrand Ducos
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Francesca Fiorini
- Univ Lyon, Molecular Microbiology and Structural Biochemistry, MMSB‐IBCP UMR5086 CNRS/Lyon1Lyon Cedex 769367France
| | - Joanne Kanaan
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Jean‐François Allemand
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - David Bensimon
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
- Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesCalifornia90095
| | - Vincent Croquette
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| |
Collapse
|
4
|
Abstract
In this special Methods collection on DNA helicases, I have solicited articles from leading experts in the field with a priority to gather a defined series of papers on highly relevant topics that encompass biological, biochemical, and biophysical aspects of helicase function. The experimental approaches described provide an opportunity for both new and more experienced scientists to use the information for the design of their own investigations. The reader will find detailed methods for single-molecule studies, novel biochemical experiments, genetic analyses, and cell biological assays in a variety of systems with an emphasis placed on state-of-the-art techniques to measure helicase function. Contributing authors were strongly encouraged to provide a carefully constructed description of the methods employed so that others might use this information in a manner that will be useful for their own particular application and helicase of interest. This special issue of Methods dedicated to DNA helicases offers readers a treasure chest of unique experimental approaches and protocols focused on rapidly developing techniques that are useful for studying both in vivo and in vitro aspects of helicase function.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|