1
|
Doss JH, Barekzi N, Gauthier DT. Improving high-throughput techniques for bacteriophage discovery in multi-well plates. METHODS IN MICROBIOLOGY 2022; 200:106542. [PMID: 35882287 DOI: 10.1016/j.mimet.2022.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Bacteriophages (also called phages) are viruses of bacteria that have numerous applications in medicine, agriculture, ecology, and molecular biology. With the increasing interest in phages for their many uses, it is now especially important to make phage discovery more efficient and economical. Using the host Mycobacterium smegmatis mc2155, which is a model organism for phage discovery research and is closely related to important pathogens of humans and other animals, we investigated three procedures that are an integral part of phage discovery: enrichment of environmental samples, phage isolation and detection (which can also be used for host range determination), and phage purification. Enrichment in 6-well plates was successful with most environmental samples, and enrichment in 24- and 96-well plates was successful with some environmental samples, demonstrating that larger sample volumes are preferred when possible, but smaller sample volumes may be acceptable if the starting concentration of phages is sufficiently high. Measuring absorbance in multi-well plates was at least as sensitive as the traditional plaque assay for the detection of phages. We also demonstrated a technique for the purification of single phage types from mixed cultures in liquid medium. Multi-well techniques can be used as alternatives or complementary approaches to traditional methods of phage discovery and characterization depending on the needs of the researcher in terms of time, available resources, host species, phage-bacteria matches, and specific goals. In the future, these techniques could be applied to the discovery of phages of aquatic mycobacteria and other hosts for which few phages have currently been isolated.
Collapse
Affiliation(s)
- Janis H Doss
- The Association of Public Health Laboratories, Silver Spring, MD, USA.
| | - Nazir Barekzi
- Department of Biology, Norfolk State University, Norfolk, VA, USA.
| | - David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
2
|
Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. LAB ON A CHIP 2018; 18:3733-3749. [PMID: 30397689 PMCID: PMC6279597 DOI: 10.1039/c8lc00818c] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adoptive T cell transfer, in particular TCR T cell therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, finding the right TCR T cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest. Here, we use droplet microfluidics for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells. Notably, our platform includes a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. Our TCR screening prototype will facilitate immunotherapeutic screening and development of T cell therapies.
Collapse
MESH Headings
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Equipment Design
- Humans
- Immunotherapy, Adoptive
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Aude I. Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Ci Ren
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Xiaoming Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Jessica K. Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Guikai Wu
- Amberstone Biosciences LLC, Irvine, CA 92617, U.S.A
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| |
Collapse
|
4
|
Okeke K, Michel-Reher MB, Michel MC. Denominator changes may obscure results from single-well assays: β 3-adrenoceptor ligand-induced changes of cell number as example. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:761-763. [PMID: 28474169 DOI: 10.1007/s00210-017-1380-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Katerina Okeke
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.,Department of Urology, University of Thessaly, Larissa, Greece
| | - Martina B Michel-Reher
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.
| |
Collapse
|