1
|
Li J, Gong SH, He YL, Cao Y, Chen Y, Huang GH, Wang YF, Zhao M, Cheng X, Zhou YZ, Zhao T, Zhao YQ, Fan M, Wu HT, Zhu LL, Wu LY. Autophagy Is Essential for Neural Stem Cell Proliferation Promoted by Hypoxia. Stem Cells 2023; 41:77-92. [PMID: 36208284 DOI: 10.1093/stmcls/sxac076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/06/2022] [Indexed: 02/02/2023]
Abstract
Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sheng-Hui Gong
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yun-Ling He
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yan Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Guang-Hai Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yu-Fei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ming Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xiang Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yan-Zhao Zhou
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Tong Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yong-Qi Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hai-Tao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ling-Ling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Department of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China.,Department of Pharmacology, University of Nanhua, Hengyang, China
| | - Li-Ying Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Carmichael ST, Llorente IL. The Ties That Bind: Glial Transplantation in White Matter Ischemia and Vascular Dementia. Neurotherapeutics 2023; 20:39-47. [PMID: 36357662 PMCID: PMC10119342 DOI: 10.1007/s13311-022-01322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
White matter injury is a progressive vascular disease that leads to neurological deficits and vascular dementia. It comprises up to 30% of all diagnosed strokes, though up to ten times as many events go undiagnosed in early stages. There are several pathologies that can lead to white matter injury. While some studies suggest that white matter injury starts as small infarcts in deep penetrating blood vessels in the brain, others point to the breakdown of endothelial function or the blood-brain barrier as the primary cause of the disease. Whether due to local endothelial or BBB dysfunction, or to local small infarcts (or a combination), white matter injury progresses, accumulates, and expands from preexisting lesions into adjacent white matter to produce motor and cognitive deficits that present as vascular dementia in the elderly. Vascular dementia is the second leading cause of dementia, and white matter injury-attributed vascular dementia represents 40% of all diagnosed dementias and aggravates Alzheimer's pathology. Despite the advances in the last 15 years, there are few animal models of progressive subcortical white matter injury or vascular dementia. This review will discuss recent progress in animal modeling of white matter injury and the emerging principles to enhance glial function as a means of promoting repair and recovery.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E Young Drive South, NRB 407, Los Angeles, CA, 90095, USA
| | - Irene L Llorente
- Department of Neurosurgery, Stanford University, 3801 Miranda Ave, 94304, Palo alto, USA.
| |
Collapse
|
3
|
Gargas J, Janowska J, Ziabska K, Ziemka-Nalecz M, Sypecka J. Neonatal Rat Glia Cultured in Physiological Normoxia for Modeling Neuropathological Conditions In Vitro. Int J Mol Sci 2022; 23:ijms23116000. [PMID: 35682683 PMCID: PMC9180927 DOI: 10.3390/ijms23116000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cell culture conditions were proven to highly affect crucial biological processes like proliferation, differentiation, intercellular crosstalk, and senescence. Oxygen tension is one of the major factors influencing cell metabolism and thus, modulating cellular response to pathophysiological conditions. In this context, the presented study aimed at the development of a protocol for efficient culture of rat neonatal glial cells (microglia, astrocytes, and oligodendrocytes) in oxygen concentrations relevant to the nervous tissue. The protocol allows for obtaining three major cell populations, which play crucial roles in sustaining tissue homeostasis and are known to be activated in response to a wide spectrum of external stimuli. The cells are cultured in media without supplement addition to avoid potential modulation of cell processes. The application of active biomolecules for coating culturing surfaces might be useful for mirroring physiological cell interactions with extracellular matrix components. The cell fractions can be assembled as cocultures to further evaluate investigated mechanisms, intercellular crosstalk, or cell response to tested pharmacological compounds. Applying additional procedures, like transient oxygen and glucose deprivation, allows to mimic in vitro the selected pathophysiological conditions. The presented culture system for neonatal rat glial cells is a highly useful tool for in vitro modeling selected neuropathological conditions.
Collapse
|
4
|
Llorente IL, Hatanaka EA, Meadow ME, Xie Y, Lowry WE, Carmichael ST. Reliable generation of glial enriched progenitors from human fibroblast-derived iPSCs. Stem Cell Res 2021; 55:102458. [PMID: 34274773 PMCID: PMC8444576 DOI: 10.1016/j.scr.2021.102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
White matter stroke (WMS) occurs as small infarcts in deep penetrating blood vessels in the brain and affects the regions of the brain that carry connections, termed the subcortical white matter. WMS progresses over years and has devastating clinical consequences. Unlike large grey matter strokes, WMS disrupts the axonal architecture of the brain and depletes astrocytes, oligodendrocyte lineage cells, axons and myelinating cells, resulting in abnormalities of gait and executive function. An astrocytic cell-based therapy is positioned as a strong therapeutic candidate after WMS. In this study we report, the reliable generation of a novel stem cell-based therapeutic product, glial enriched progenitors (GEPs) derived from human induced pluripotent stem cells (hiPSCs). By transient treatment of hiPSC derived neural progenitors (hiPSC-NPCs) with the small molecule deferoxamine, a prolyl hydroxylase inhibitor, for three days hiPSC-NPCs become permanently biased towards an astrocytic fate, producing hiPSC-GEPs. In preparation for clinical application, we have developed qualification assays to ensure identity, safety, purity, and viability of the cells prior to manufacture. Using tailored q-RT-PCR-based assays, we have demonstrated the lack of pluripotency in our final therapeutic candidate cells (hiPSC-GEPs) and we have identified the unique genetic profile of hiPSC-GEPs that is clearly distinct from the parent lines, hiPSCs and iPSC-NPCs. After completion of the viability assay, we have stablished the therapeutic window of use for hiPSC-GEPs in future clinical applications (7 h). Lastly, we were able to reliably and consistently produce a safe therapeutic final product negative for contamination by any human or murine viral pathogens, selected bacteria, common laboratory mycoplasmas, growth of any aerobes, anaerobes, yeast, or fungi and 100 times less endotoxin levels than the maximum acceptable value. This study demonstrates the reliable and safe generation of patient derived hiPSC-GEPs that are clinically ready as a cell-based therapeutic approach for WMS.
Collapse
Affiliation(s)
- Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, USA
| | - Emily A Hatanaka
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Michael E Meadow
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | | |
Collapse
|
5
|
Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia. Front Med 2020; 15:472-485. [PMID: 33263836 DOI: 10.1007/s11684-021-0832-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.
Collapse
|
6
|
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020; 12:247. [PMID: 32848716 PMCID: PMC7426063 DOI: 10.3389/fnagi.2020.00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Ooi L, Dottori M, Cook AL, Engel M, Gautam V, Grubman A, Hernández D, King AE, Maksour S, Targa Dias Anastacio H, Balez R, Pébay A, Pouton C, Valenzuela M, White A, Williamson R. If Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions? Neuroscientist 2020; 26:438-454. [PMID: 32281909 PMCID: PMC7539594 DOI: 10.1177/1073858420912404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because our beliefs regarding our individuality, autonomy, and personhood are intimately bound up with our brains, there is a public fascination with cerebral organoids, the "mini-brain," the "brain in a dish". At the same time, the ethical issues around organoids are only now being explored. What are the prospects of using human cerebral organoids to better understand, treat, or prevent dementia? Will human organoids represent an improvement on the current, less-than-satisfactory, animal models? When considering these questions, two major issues arise. One is the general challenge associated with using any stem cell-generated preparation for in vitro modelling (challenges amplified when using organoids compared with simpler cell culture systems). The other relates to complexities associated with defining and understanding what we mean by the term "dementia." We discuss 10 puzzles, issues, and stumbling blocks to watch for in the quest to model "dementia in a dish."
Collapse
Affiliation(s)
- Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Damián Hernández
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Helena Targa Dias Anastacio
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Alice Pébay
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Colin Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michael Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony White
- Queensland Institute of Medical Research Berghofer, Brisbane, Queensland, Australia
| | - Robert Williamson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Schwartz PH. Neural stem cells in health and disease. Methods 2018; 133:1-2. [PMID: 29425545 DOI: 10.1016/j.ymeth.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Philip H Schwartz
- National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, 1201 West La Veta Avenue, Orange, CA 92868-4203, United States.
| |
Collapse
|