1
|
Bhattacharya S, Varney KM, Dahmane T, Johnson BA, Weber DJ, Palmer AG. Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers. JOURNAL OF BIOMOLECULAR NMR 2024; 78:169-177. [PMID: 38856928 PMCID: PMC11545651 DOI: 10.1007/s10858-024-00443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Deuterium (2H) spin relaxation of 13CH2D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B0 dependence of the 2H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(ωD) and J(2ωD). In this study, the linear relation between 2H relaxation rates at B0 fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate 13C-12C labeled sample of E. coli RNase H. Deuterium relaxation rate constants (R1, R1ρ, RQ, RAP) were measured for 57 well-resolved 13CH2D moieties in RNase H at 1H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at B0 fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six J(ωD) values for each methyl peak. The J(ω) profile for each peak was fit to the original (τM, Sf2, τf) or extended model-free function (τM, Sf2, Ss2, τf, τs) to obtain optimized dynamic parameters.
Collapse
Affiliation(s)
| | - Kristen M Varney
- University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA
| | - Tassadite Dahmane
- New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - David J Weber
- University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA
| | - Arthur G Palmer
- New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Banayan NE, Hsu A, Hunt JF, Palmer AG, Friesner RA. Parsing Dynamics of Protein Backbone NH and Side-Chain Methyl Groups using Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:6316-6327. [PMID: 38957960 PMCID: PMC11528701 DOI: 10.1021/acs.jctc.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Experimental NMR spectroscopy and theoretical molecular dynamics (MD) simulations provide complementary insights into protein conformational dynamics and hence into biological function. The present work describes an extensive set of backbone NH and side-chain methyl group generalized order parameters for the Escherichia coli ribonuclease HI (RNH) enzyme derived from 2-μs microsecond MD simulations using the OPLS4 and AMBER-FF19SB force fields. The simulated generalized order parameters are compared with values derived from NMR 15N and 13CH2D spin relaxation measurements. The squares of the generalized order parameters, S2 for the N-H bond vector and Saxis2 for the methyl group symmetry axis, characterize the equilibrium distribution of vector orientations in a molecular frame of reference. Optimal agreement between simulated and experimental results was obtained by averaging S2 or Saxis2 calculated by dividing the simulated trajectories into 50 ns blocks (∼five times the rotational diffusion correlation time for RNH). With this procedure, the median absolute deviations (MAD) between experimental and simulated values of S2 and Saxis2 are 0.030 (NH) and 0.061 (CH3) for OPLS4 and 0.041 (NH) and 0.078 (CH3) for AMBER-FF19SB. The MAD between OPLS4 and AMBER-FF19SB are 0.021 (NH) and 0.072 (CH3). The generalized order parameters for the methyl group symmetry axis can be decomposed into contributions from backbone fluctuations, between-rotamer dihedral angle transitions, and within-rotamer dihedral angle fluctuations. Analysis of the simulation trajectories shows that (i) backbone and side chain conformational fluctuations exhibit little correlation and that (ii) fluctuations within rotamers are limited and highly uniform with values that depend on the number of dihedral angles considered. Low values of Saxis2, indicative of enhanced side-chain flexibility, result from between-rotamer transitions that can be enhanced by increased local backbone flexibility.
Collapse
Affiliation(s)
- Nooriel E. Banayan
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Andrew Hsu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - John F. Hunt
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
3
|
Xin Y, Shen C, Tang M, Guo Z, Shi Y, Gu Z, Shao J, Zhang L. Recreating the natural evolutionary trend in key microdomains provides an effective strategy for engineering of a thermomicrobial N-demethylase. J Biol Chem 2022; 298:101656. [PMID: 35124004 PMCID: PMC8892156 DOI: 10.1016/j.jbc.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 °C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N- bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains—including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site—was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.
Collapse
|
4
|
Abstract
Relaxation in nuclear magnetic resonance is a powerful method for obtaining spatially resolved, timescale-specific dynamics information about molecular systems. However, dynamics in biomolecular systems are generally too complex to be fully characterized based on NMR data alone. This is a familiar problem, addressed by the Lipari-Szabo model-free analysis, a method that captures the full information content of NMR relaxation data in case all internal motion of a molecule in solution is sufficiently fast. We investigate model-free analysis, as well as several other approaches, and find that model-free, spectral density mapping, LeMaster's approach, and our detector analysis form a class of analysis methods, for which behavior of the fitted parameters has a well-defined relationship to the distribution of correlation times of motion, independent of the specific form of that distribution. In a sense, they are all "model-free." Of these methods, only detectors are generally applicable to solid-state NMR relaxation data. We further discuss how detectors may be used for comparison of experimental data to data extracted from molecular dynamics simulation, and how simulation may be used to extract details of the dynamics that are not accessible via NMR, where detector analysis can be used to connect those details to experiments. We expect that combined methodology can eventually provide enough insight into complex dynamics to provide highly accurate models of motion, thus lending deeper insight into the nature of biomolecular dynamics.
Collapse
Affiliation(s)
- Kai Zumpfe
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert A Smith
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Smith AA, Bolik-Coulon N, Ernst M, Meier BH, Ferrage F. How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution? JOURNAL OF BIOMOLECULAR NMR 2021; 75:119-131. [PMID: 33759077 PMCID: PMC8018934 DOI: 10.1007/s10858-021-00361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The dynamics of molecules in solution is usually quantified by the determination of timescale-specific amplitudes of motions. High-resolution nuclear magnetic resonance (NMR) relaxometry experiments-where the sample is transferred to low fields for longitudinal (T1) relaxation, and back to high field for detection with residue-specific resolution-seeks to increase the ability to distinguish the contributions from motion on timescales slower than a few nanoseconds. However, tumbling of a molecule in solution masks some of these motions. Therefore, we investigate to what extent relaxometry improves timescale resolution, using the "detector" analysis of dynamics. Here, we demonstrate improvements in the characterization of internal dynamics of methyl-bearing side chains by carbon-13 relaxometry in the small protein ubiquitin. We show that relaxometry data leads to better information about nanosecond motions as compared to high-field relaxation data only. Our calculations show that gains from relaxometry are greater with increasing correlation time of rotational diffusion.
Collapse
Affiliation(s)
- Albert A Smith
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.
- Physical Chemistry ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Nicolas Bolik-Coulon
- Laboratoire des biomolécules, LBM, Département de Chimie, École normale superieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Matthias Ernst
- Physical Chemistry ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Fabien Ferrage
- Laboratoire des biomolécules, LBM, Département de Chimie, École normale superieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
6
|
Xin Y, Gao Q, Gu Y, Hao M, Fan G, Zhang L. Self-assembly of metal-cholesterol oxidase hybrid nanostructures and application in bioconversion of steroids derivatives. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1989-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
8
|
Bibow S. Opportunities and Challenges of Backbone, Sidechain, and RDC Experiments to Study Membrane Protein Dynamics in a Detergent-Free Lipid Environment Using Solution State NMR. Front Mol Biosci 2019; 6:103. [PMID: 31709261 PMCID: PMC6823230 DOI: 10.3389/fmolb.2019.00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Whereas solution state NMR provided a wealth of information on the dynamics landscape of soluble proteins, only few studies have investigated membrane protein dynamics in a detergent-free lipid environment. Recent developments of smaller nanodiscs and other lipid-scaffolding polymers, such as styrene maleic acid (SMA), however, open new and promising avenues to explore the function-dynamics relationship of membrane proteins as well as between membrane proteins and their surrounding lipid environment. Favorably sized lipid-bilayer nanodiscs, established membrane protein reconstitution protocols and sophisticated solution NMR relaxation methods probing dynamics over a wide range of timescales will eventually reveal unprecedented lipid-membrane protein interdependencies that allow us to explain things we have not been able to explain so far. In particular, methyl group dynamics resulting from CEST, CPMG, ZZ exchange, and RDC experiments are expected to provide new and surprising insights due to their proximity to lipids, their applicability in large 100+ kDa assemblies and their simple labeling due to the availability of commercial precursors. This review summarizes the recent developments of membrane protein dynamics with a special focus on membrane protein dynamics in lipid-bilayer nanodiscs. Opportunities and challenges of backbone, side chain and RDC dynamics applied to membrane proteins are discussed. Solution-state NMR and lipid nanodiscs bear great potential to change our molecular understanding of lipid-membrane protein interactions.
Collapse
Affiliation(s)
- Stefan Bibow
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Gill ML, Hsu A, Palmer AG. Detection of chemical exchange in methyl groups of macromolecules. JOURNAL OF BIOMOLECULAR NMR 2019; 73:443-450. [PMID: 31407203 PMCID: PMC6862771 DOI: 10.1007/s10858-019-00240-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The zero- and double-quantum methyl TROSY Hahn-echo and the methyl 1H-1H dipole-dipole cross-correlation nuclear magnetic resonance experiments enable estimation of multiple quantum chemical exchange broadening in methyl groups in proteins. The two relaxation rate constants are established to be linearly dependent using molecular dynamics simulations and empirical analysis of experimental data. This relationship allows chemical exchange broadening to be recognized as an increase in the Hahn-echo relaxation rate constant. The approach is illustrated by analyzing relaxation data collected at three temperatures for E. coli ribonuclease HI and by analyzing relaxation data collected for different cofactor and substrate complexes of E. coli AlkB.
Collapse
Affiliation(s)
- Michelle L Gill
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- BenevolentAI, 81 Prospect St, Brooklyn, NY, 11201, USA
| | - Andrew Hsu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Smith AA, Ernst M, Meier BH, Ferrage F. Reducing bias in the analysis of solution-state NMR data with dynamics detectors. J Chem Phys 2019; 151:034102. [PMID: 31325945 DOI: 10.1063/1.5111081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nuclear magnetic resonance (NMR) is sensitive to dynamics on a wide range of correlation times. Recently, we have shown that analysis of relaxation rates via fitting to a correlation function with a small number of exponential terms could yield a biased characterization of molecular motion in solid-state NMR due to limited sensitivity of experimental data to certain ranges of correlation times. We introduced an alternative approach based on "detectors" in solid-state NMR, for which detector responses characterize motion for a range of correlation times and reduce potential bias resulting from the use of simple models for the motional correlation functions. Here, we show that similar bias can occur in the analysis of solution-state NMR relaxation data. We have thus adapted the detector approach to solution-state NMR, specifically separating overall tumbling motion from internal motions and accounting for contributions of chemical exchange to transverse relaxation. We demonstrate that internal protein motions can be described with detectors when the overall motion and the internal motions are statistically independent. We illustrate the detector analysis on ubiquitin with typical relaxation data sets recorded at a single high magnetic field or at multiple high magnetic fields and compare with results of model-free analysis. We also compare our methodology to LeMaster's method of dynamics analysis.
Collapse
Affiliation(s)
- Albert A Smith
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Matthias Ernst
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Beat H Meier
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Fabien Ferrage
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
NMR Methods of Characterizing Biomolecular Structural Dynamics and Conformational Ensembles. Methods 2018; 148:1-3. [DOI: 10.1016/j.ymeth.2018.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
New Methods in Biomolecular Nuclear Magnetic Resonance Spectroscopy. Methods 2018; 138-139:1-2. [DOI: 10.1016/j.ymeth.2018.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
O'Brien PA, Palmer AG. TROSY pulse sequence for simultaneous measurement of the 15N R 1 and { 1H}- 15N NOE in deuterated proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 70:205-209. [PMID: 29663108 PMCID: PMC6510663 DOI: 10.1007/s10858-018-0181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
A TROSY-based NMR experiment is described for simultaneous measurement of the 15N longitudinal relaxation rate constant R1 and the {1H}-15N nuclear Overhauser enhancement. The experiment is based on the observation that the TROSY mixing pulse sequence element symmetrically exchanges 1H and 15N magnetizations. The accuracy of the proposed technique is validated by comparison to independent measurements of both relaxation parameters for the protein ubiquitin. The simultaneous experiment is approximately 20-33% shorter than conventional sequential measurements.
Collapse
Affiliation(s)
- Paul A O'Brien
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|