Hoang Trung Chau T, Hoang Anh Mai D, Ngoc Pham D, Thi Quynh Le H, Yeol Lee E. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics.
Int J Mol Sci 2020;
21:E3192. [PMID:
32366036 PMCID:
PMC7247568 DOI:
10.3390/ijms21093192]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Riboswitches and toehold switches are considered to have potential for implementation in various fields, i.e., biosensing, metabolic engineering, and molecular diagnostics. The specific binding, programmability, and manipulability of these RNA-based molecules enable their intensive deployments in molecular detection as biosensors for regulating gene expressions, tracking metabolites, or detecting RNA sequences of pathogenic microorganisms. In this review, we will focus on the development of riboswitches and toehold switches in biosensing and molecular diagnostics. This review introduces the operating principles and the notable design features of riboswitches as well as toehold switches. Moreover, we will describe the advances and future directions of riboswitches and toehold switches in biosensing and molecular diagnostics.
Collapse