1
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
2
|
Roles of Exosomes in Chronic Rhinosinusitis: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911284. [PMID: 36232588 PMCID: PMC9570170 DOI: 10.3390/ijms231911284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiology of chronic rhinosinusitis (CRS) is multifactorial and not entirely clear. The objective of the review was to examine the current state of knowledge concerning the role of exosomes in CRS. For this systematic review, we searched PubMed/MEDLINE, Scopus, CENTRAL, and Web of Science databases for studies published until 7 August 2022. Only original research articles describing studies published in English were included. Reviews, book chapters, case studies, conference papers, and opinions were excluded. The quality of the evidence was assessed with the modified Office and Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies. Of 250 records identified, 17 were eligible, all of which had a low to moderate risk of overall bias. Presented findings indicate that exosomal biomarkers, including proteins and microRNA, act as promising biomarkers in the diagnostics and prognosis of CRS patients and, in addition, may contribute to finding novel therapeutic targets. Exosomes reflecting tissue proteomes are excellent, highly available material for studying proteomic alterations noninvasively. The first steps have already been taken, but more advanced research on nasal exosomes is needed, which might open a wider door for individualized medicine in CRS.
Collapse
|
3
|
HSP70 upregulation in nasal mucosa of symptomatic children with allergic rhinitis and potential risk of asthma development. Sci Rep 2022; 12:14104. [PMID: 35982171 PMCID: PMC9388484 DOI: 10.1038/s41598-022-18443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are the most common causes of chronic inflammation of the upper and lower airways in childhood. However, a nasal biomarker that can link to pulmonary inflammation is yet to be found. The present paper aims to investigate the possible role in inflammation of two inducible 70-kDa Heat Shock Proteins (HSP70) members, HSPA1A/B and HSPA6, in nasal mucosa cells of allergic children through their mRNA expression analysis, and their correlation to both spirometric and FeNO values. The relationship between FeNO in lower airways and ∆Cts of HSPA1A/B in nasal mucosa seems to be influenced by clinical symptoms regardless of age, sex, and sensitization patterns. Therefore, HSP70 expression, as well as FeNO levels, could have a predictive capability to identify lower airways inflammation and thus to recognize rhinitic children having a potential risk of asthma development.
Collapse
|
4
|
Jia H, Zhang R, Liang X, Jiang X, Bu Q. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis. Cell Signal 2022; 99:110435. [PMID: 35953026 DOI: 10.1016/j.cellsig.2022.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common disease worldwide. Imbalances in T helper (Th) cell differentiation and the dysregulation of related cytokines form the immunological basis of AR. miR-126 may play an important regulatory role in AR as a new marker and predictor of the disease. Therefore, the aim of this study was to explore the regulatory effects of miR-126 on Th cell differentiation and cytokine expression in AR. METHODS T lymphocytes and rat models were transfected with a miR-126 mimic and an inhibitor. The expression of miR-126 and Th cell-related cytokines was detected by RT-qPCR and western blotting. The serum IgE levels were detected using ELISA. In the nasal mucosa, pathological changes were observed by HE staining, protein expression was detected by immunohistochemistry, and the differentiation ratio of Th cell subsets was detected by flow cytometry. RESULTS During the occurrence and development of AR, the expression of miR-126 and the IgE levels were increased in the AR group. The number of Treg cell subsets decreased in the AR rats, increased after the miR-126 agomir intervention and decreased after miR-126 antagomir intervention. The number of Th1 and Th2 cell subsets increased in the AR rats, decreased after miR-126 agomir intervention and increased after the miR-126 antagomir intervention. CONCLUSION We propose that miR-126 may be involved in the pathogenesis of AR by positively regulating the expression of Treg cytokines and negatively regulating the expression of the Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Honglin Jia
- The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China.
| | - Ru Zhang
- Department of College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830054, China.
| | - Xiaoying Liang
- Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang 830054, China.
| | - Xiaofang Jiang
- Department of Central Laboratory, HaploX Biotechnology, Shenzhen, Guangdong 518000, China.
| | - Qian Bu
- Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
5
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
6
|
Bhardwaj N, Sena M, Ghaffari G, Ishmael F. MiR-4668 as a Novel Potential Biomarker for Eosinophilic Esophagitis. ALLERGY & RHINOLOGY 2020; 11:2152656720953378. [PMID: 32923026 PMCID: PMC7457706 DOI: 10.1177/2152656720953378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction Eosinophilic esophagitis (EoE) is a clinico-pathological diagnosis
characterized by esophageal dysfunction and eosinophilic infiltration of the
esophagus. Demonstration of esophageal eosinophilia (more than 15
eosinophils/hpf) in biopsy specimen obtained by esophagogastroduodenoscopy
(EGD) continues to be the gold standard for diagnosis and monitoring of
response to therapy. There is a growing necessity for non-invasive
biomarkers that can accurately diagnose this condition and assess response
to therapy. While microRNAs (miRNA) are being investigated in allergic
diseases, including EoE, not many studies have explored the role of salivary
miRNAs in EoE. MiR-4668-5p is a particularly interesting candidate, as it is
predicted to regulate TGF-beta signaling and has not previously been
identified as a target in any allergy disease. We sought to further
investigate the role of miR-4668 as a biomarker to characterize and monitor
response to treatment with swallowed topical glucocorticoids. Methods After IRB approval, twenty-two adult patients with EoE were randomly enrolled
to provide a saliva sample before and after 2 months of swallowed
fluticasone therapy. Differences of miRNA expression before and after
treatment were analyzed by paired T-test. A significance cutoff of <0.05
was used for all analyses. Results Expression of miR-4668 was higher in EoE vs. non-EoE subjects. The level of
miR-4668 decreased in all subjects except one, with a mean fold change
0.49 ± 0.25. There was an association between miRNA expression and number of
positive aeroallergens. The miR-4668 high group had a higher number of
positive aeroallergen tests, while the miR-4668 low group had a greater
number of subjects with drug allergies. Conclusions In this study, we identified that salivary miRNAs may serve as biomarkers to
characterize EoE and response to topical corticosteroids. We specifically
identified miR-4668 as a novel potential biomarker, which was not previously
discovered as a target in EoE or any other allergic disease.
Collapse
Affiliation(s)
- Neeti Bhardwaj
- Department of Pediatrics, Division of Allergy and Immunology, Pennsylvania State Children's Hospital, Hershey, Pennsylvania
| | - Maria Sena
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Gisoo Ghaffari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Faoud Ishmael
- Mount Nittany Medical Center, Allergy and Immunology Group, State College, Pennsylvania
| |
Collapse
|
7
|
Feketea G, Bocsan CI, Popescu C, Gaman M, Stanciu LA, Zdrenghea MT. A Review of Macrophage MicroRNAs' Role in Human Asthma. Cells 2019; 8:cells8050420. [PMID: 31071965 PMCID: PMC6562863 DOI: 10.3390/cells8050420] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Corina I Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Cristian Popescu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK.
| | - Mihnea T Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Oncology Institute, 400010 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Epigenetic changes: An emerging potential pharmacological target in allergic rhinitis. Int Immunopharmacol 2019; 71:76-83. [PMID: 30878818 DOI: 10.1016/j.intimp.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
The importance of epigenetics has increased due to identification of its role in the pathophysiology of a number of diseases including allergic rhinitis. Amongst the different epigenetic changes in allergic retinitis, deacetylation of histone proteins by histone deacetylase (HDACs), hypermethylation of DNA by DNA methyltransferases (DNMT) and alteration in post-transcriptional process by the changes in the levels of miRNA are widely studied. Studies conducted related to allergic rhinitis have shown the elevation in the levels of HDAC1, 3 and 11 in the nasal epithelia and HDAC inhibitors have shown effectiveness in decreasing the symptoms of rhinitis. Their beneficial effects are attributed to restoration of the expression of TWIK-related potassium channel-1, correction of cytokine profile along with normalization of Th1/Th2 imbalance. Another epigenetic change due to increase in DNMT activity may induce DNA hypermethylation in CpG sites in the airway epithelial cells and CD4+ T-cells. The reduction in DNA methylation decreases allergic symptoms and normalizes the over-reactive immune system. Mechanistically, allergens may promote the hypermethylation in the promoter region of IFN-γ gene in CD4+ T cells via activation of ERK pathway to decrease the expression of IFN-γ. In allergic rhinitis patients, there is also a downregulation of certain miRNAs including miR-135a, miR-146a, miR-181a, miR-155 and upregulation of miRNA19a. This review discusses the studies describing the epigenetic changes taking place in the host cells in response to allergen along with possible mechanisms.
Collapse
|
9
|
|