1
|
Schiopu I, Dragomir I, Asandei A. Single molecule technique unveils the role of electrostatic interactions in ssDNA-gp32 molecular complex stability. RSC Adv 2024; 14:5449-5460. [PMID: 38352678 PMCID: PMC10862658 DOI: 10.1039/d3ra07746b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
The exploration of single-strand DNA-binding protein (SSB)-ssDNA interactions and their crucial roles in essential biological processes lagged behind other types of protein-nucleic acid interactions, such as protein-dsDNA and protein-RNA interactions. The ssDNA binding protein gene product 32 (gp32) of the T4 bacteriophage is a central integrating component of the replication complex that must continuously bind to and unbind from transiently exposed template strands during the DNA synthesis. To gain deeper insights into the electrostatic conditions influencing the stability of the ssDNA-gp32 molecular complex, like the salt concentration or some metal ions proven to specifically bind to gp32, we employed a method that performs rapid measurements of the DNA-protein stability using an α-Hemolysin (α-HL) protein nanopore. We indirectly probed the stability of a protein-nucleic acid complex by monitoring the dissociation process between the gp32 protein and the ssDNA molecular complex in single-molecular electrophysiology experiments, but also through fluorescence spectroscopy techniques. We have shown that the complex is more stable in 0.5 M KCl solution than in 2 M KCl solution and that the presence of Zn2+ ions further increases this stability for any salt used in the present study. This method can be applied to other nucleic acid-protein molecular complexes, as well as for an accurate determination of the drug-protein carrier stability.
Collapse
Affiliation(s)
- Irina Schiopu
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| | - Isabela Dragomir
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| | - Alina Asandei
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| |
Collapse
|
2
|
Lü H, Wang J. Annotation of signal transduction systems in living bacteria by monitoring the TF-promotor binding <italic>in situ</italic> based on intermolecular FRET. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Svirina A, Chamachi N, Schlierf M. Single‐molecule approaches reveal outer membrane protein biogenesis dynamics. Bioessays 2022; 44:e2200149. [DOI: 10.1002/bies.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Svirina
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Neharika Chamachi
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Michael Schlierf
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
- Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
| |
Collapse
|
5
|
Wang P, Zhang G, Xu Z, Chen Z, Liu X, Wang C, Zheng C, Wang J, Zhang H, Yan A. Whole-cell FRET monitoring of transcription factor activities enables functional annotation of signal transduction systems in living bacteria. J Biol Chem 2022; 298:102258. [PMID: 35839853 PMCID: PMC9396075 DOI: 10.1016/j.jbc.2022.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria adapt to their constantly changing environments largely by transcriptional regulation through the activities of various transcription factors (TFs). However, techniques that monitor TF–promoter interactions in situ in living bacteria are lacking. Herein, we developed a whole-cell TF–promoter binding assay based on the intermolecular FRET between an unnatural amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine, which labels TFs with bright fluorescence through genetic encoding (donor fluorophore) and the live cell nucleic acid stain SYTO 9 (acceptor fluorophore). We show that this new FRET pair monitors the intricate TF–promoter interactions elicited by various types of signal transduction systems, including one-component (CueR) and two-component systems (BasSR and PhoPQ), in bacteria with high specificity and sensitivity. We demonstrate that robust CouA incorporation and FRET occurrence is achieved in all these regulatory systems based on either the crystal structures of TFs or their simulated structures, if 3D structures of the TFs were unavailable. Furthermore, using CueR and PhoPQ systems as models, we demonstrate that the whole-cell FRET assay is applicable for the identification and validation of complex regulatory circuit and novel modulators of regulatory systems of interest. Finally, we show that the FRET system is applicable for single-cell analysis and monitoring TF activities in Escherichia coli colonizing a Caenorhabditis elegans host. In conclusion, we established a tractable and sensitive TF–promoter binding assay, which not only complements currently available approaches for DNA–protein interactions but also provides novel opportunities for functional annotation of bacterial signal transduction systems and studies of the bacteria–host interface.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Guangming Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhe Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Hongmin Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
6
|
Swetha P, Fan Z, Wang F, Jiang JH. Genetically encoded light-up RNA aptamers and their applications for imaging and biosensing. J Mater Chem B 2021; 8:3382-3392. [PMID: 31984401 DOI: 10.1039/c9tb02668a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular small ligands and biomacromolecules are playing crucial roles not only as executors but also as regulators. It is essential to develop tools to investigate their dynamics to interrogate their functions and reflect the cellular status. Light-up RNA aptamers are RNA sequences that can bind with their cognate nonfluorescent fluorogens and greatly activate their fluorescence. The emergence of genetically encoded light-up RNA aptamers has provided fascinating tools for studying intracellular small ligands and biomacromolecules owing to their high fluorescence activation degree and facile programmability. Here we review the burgeoning field of light-up RNA aptamers. We first briefly introduce light-up RNA aptamers with a focus on the photophysical properties of the fluorogens. Then design strategies of genetically encoded light-up RNA aptamer based sensors including turn-on, signal amplification and ratiometric rationales are emphasized.
Collapse
Affiliation(s)
- Puchakayala Swetha
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hu-nan University, Changsha, 410082, P. R. China.
| | | | | | | |
Collapse
|
7
|
Mollarasouli F, Badilli U, Bakirhan NK, Ozkan SA, Ozkan Y. Advanced DNA nanomachines: Strategies and bioapplications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Lou C, Ye X, Chen G, Zhu J, Kang J. Screening inhibitors for blocking UHRF1-methylated DNA interaction with capillary electrophoresis. J Chromatogr A 2020; 1636:461790. [PMID: 33340746 DOI: 10.1016/j.chroma.2020.461790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022]
Abstract
Epigenetic inheritance in mammals relies in part on propagation of DNA methylation patterns throughout development. UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) is required for maintenance the methylation pattern. It was reported that UHRF1 is overexpressed in a number of cancer types, and its depletion has been established to inhibit growth and invasion of cancer cells. It has been considered as a new therapeutic target for cancer. In the present work, we described a method for screening inhibitors for blocking the formation of UHRF1-methylated DNA (mDNA) complex by using nonequilibrium capillary electrophoresis of the equilibrium mixture (NECEEM). A recombinant UHRF1 with the SRA domain (residues 408-643), a fluorescently labeled double strand mDNA (12 mer) and a known inhibitor mitoxantrone were employed for proof of concept. The method allows to measure the dissociation constant (Kd) of the UHRF1-mDNA complex as well as the rate kinetic constant for complex formation (kon) and dissociation (koff). A small chemical library composed of 60 natural compounds were used to validate the method. Sample pooling strategy was employed to improve the screening throughput. The merit of the method was confirmed by the discovery of two natural products proanthocyanidins and baicalein as the new inhibitors for blocking the formation of UHRF1-mDNA complex. Our work demonstrated that CE represents a straightforward and robust technique for studying UHRF1-mDNA interaction and screening of the inhibitors.
Collapse
Affiliation(s)
- Chunli Lou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of physical science and technology, ShanghaiTech University, Haike Road 100, Shanghai, 200120, China; University of Chinese Academy of Sciences
| | - Xiongzhen Ye
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of physical science and technology, ShanghaiTech University, Haike Road 100, Shanghai, 200120, China; University of Chinese Academy of Sciences
| | - Ge Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of physical science and technology, ShanghaiTech University, Haike Road 100, Shanghai, 200120, China.
| |
Collapse
|
9
|
Lavelle C, Tardin C. Single molecule approaches of nucleic acids conformational changes. Methods 2019; 169:1-2. [PMID: 31518659 DOI: 10.1016/j.ymeth.2019.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Christophe Lavelle
- National Museum of Natural History, CNRS, UMR7196 / INSERM U1164, 75005 Paris, France.
| | | |
Collapse
|