1
|
Li Z, Portillo-Ledesma S, Schlick T. Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data. Curr Opin Cell Biol 2023; 83:102209. [PMID: 37506571 PMCID: PMC10529954 DOI: 10.1016/j.ceb.2023.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Chromosome conformation capture technologies that provide frequency information for contacts between genomic regions have been crucial for increasing our understanding of genome folding and regulation. However, such data do not provide direct evidence of the spatial 3D organization of chromatin. In this opinion article, we discuss the development and application of computational methods to reconstruct chromatin 3D structures from experimental 2D contact data, highlighting how such modeling provides biological insights and can suggest mechanisms anchored to experimental data. By applying different reconstruction methods to the same contact data, we illustrate some state-of-the-art of these techniques and discuss our gene resolution approach based on Brownian dynamics and Monte Carlo sampling.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Hirata Y, Oda AH, Motono C, Shiro M, Ohta K. Imputation-free reconstructions of three-dimensional chromosome architectures in human diploid single-cells using allele-specified contacts. Sci Rep 2022; 12:11757. [PMID: 35817790 PMCID: PMC9273635 DOI: 10.1038/s41598-022-15038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Single-cell Hi-C analysis of diploid human cells is difficult because of the lack of dense chromosome contact information and the presence of homologous chromosomes with very similar nucleotide sequences. Thus here, we propose a new algorithm to reconstruct the three-dimensional (3D) chromosomal architectures from the Hi-C dataset of single diploid human cells using allele-specific single-nucleotide variations (SNVs). We modified our recurrence plot-based algorithm, which is suitable for the estimation of the 3D chromosome structure from sparse Hi-C datasets, by newly incorporating a function of discriminating SNVs specific to each homologous chromosome. Here, we eventually regard a contact map as a recurrence plot. Importantly, the proposed method does not require any imputation for ambiguous segment information, but could efficiently reconstruct 3D chromosomal structures in single human diploid cells at a 1-Mb resolution. Datasets of segments without allele-specific SNVs, which were considered to be of little value, can also be used to validate the estimated chromosome structure. Introducing an additional mathematical measure called a refinement further improved the resolution to 40-kb or 100-kb. The reconstruction data supported the notion that human chromosomes form chromosomal territories and take fractal structures where the dimension for the underlying chromosome structure is a non-integer value.
Collapse
Affiliation(s)
- Yoshito Hirata
- Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan
| | - Masanori Shiro
- Mathematical Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Wang H, Yang J, Zhang Y, Qian J, Wang J. Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO. Nat Commun 2022; 13:2645. [PMID: 35551182 PMCID: PMC9098643 DOI: 10.1038/s41467-022-30270-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
High-resolution reconstruction of spatial chromosome organizations from chromatin contact maps is highly demanded, but is hindered by extensive pairwise constraints, substantial missing data, and limited resolution and cell-type availabilities. Here, we present FLAMINGO, a computational method that addresses these challenges by compressing inter-dependent Hi-C interactions to delineate the underlying low-rank structures in 3D space, based on the low-rank matrix completion technique. FLAMINGO successfully generates 5 kb- and 1 kb-resolution spatial conformations for all chromosomes in the human genome across multiple cell-types, the largest resources to date. Compared to other methods using various experimental metrics, FLAMINGO consistently demonstrates superior accuracy in recapitulating observed structures with raises in scalability by orders of magnitude. The reconstructed 3D structures efficiently facilitate discoveries of higher-order multi-way interactions, imply biological interpretations of long-range QTLs, reveal geometrical properties of chromatin, and provide high-resolution references to understand structural variabilities. Importantly, FLAMINGO achieves robust predictions against high rates of missing data and significantly boosts 3D structure resolutions. Moreover, FLAMINGO shows vigorous cross cell-type structure predictions that capture cell-type specific spatial configurations via integration of 1D epigenomic signals. FLAMINGO can be widely applied to large-scale chromatin contact maps and expand high-resolution spatial genome conformations for diverse cell-types.
Collapse
Affiliation(s)
- Hao Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxin Yang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yu Zhang
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Jianliang Qian
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Carron L, Morlot JB, Lesne A, Mozziconacci J. The 3D Organization of Chromatin Colors in Mammalian Nuclei. Methods Mol Biol 2022; 2301:317-336. [PMID: 34415544 DOI: 10.1007/978-1-0716-1390-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While many computational methods have been proposed for 3D chromosome reconstruction from chromosomal contact maps, these methods are rarely used for the interpretation of such experimental data, in particular Hi-C data. We posit that this is due to the lack of an easy-to-use implementation of the proposed algorithms, as well as to the important computational cost of most methods. We here give a detailed implementation of the fast ShRec3D algorithm. We provide a tutorial that will enable the reader to reconstruct 3D consensus structures for human chromosomes and to decorate these structures with chromatin epigenetic states. We use this methodology to show that the bivalent chromatin, including Polycomb-rich domains, is spatially segregated and located in between the active and the quiescent chromatin compartments.
Collapse
Affiliation(s)
- Leopold Carron
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France
- Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Jean-Baptiste Morlot
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France
| | - Annick Lesne
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France.
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Julien Mozziconacci
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France.
- Muséum National d'Histoire Naturelle, Structure et Instabilité des Genomes, Paris, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Di Stefano M, Nützmann HW. Modeling the 3D genome of plants. Nucleus 2021; 12:65-81. [PMID: 34057011 PMCID: PMC8168717 DOI: 10.1080/19491034.2021.1927503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.
Collapse
Affiliation(s)
- Marco Di Stefano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
6
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Di Stefano M, Paulsen J, Jost D, Marti-Renom MA. 4D nucleome modeling. Curr Opin Genet Dev 2020; 67:25-32. [PMID: 33253996 PMCID: PMC8098745 DOI: 10.1016/j.gde.2020.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023]
Abstract
The intrinsic dynamic nature of chromosomes is emerging as a fundamental component in regulating DNA transcription, replication, and damage-repair among other nuclear functions. With this increased awareness, reinforced over the last ten years, many new experimental techniques, mainly based on microscopy and chromosome conformation capture, have been introduced to study the genome in space and time. Owing to the increasing complexity of these cutting-edge techniques, computational approaches have become of paramount importance to interpret, contextualize, and complement such experiments with new insights. Hence, it is becoming crucial for experimental biologists to have a clear understanding of the diverse theoretical modeling approaches available and the biological information each of them can provide.
Collapse
Affiliation(s)
- Marco Di Stefano
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.
| | - Jonas Paulsen
- EVOGENE, Department of Biosciences, Faculty of Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
8
|
Das P, Shen T, McCord RP. Inferring chromosome radial organization from Hi-C data. BMC Bioinformatics 2020; 21:511. [PMID: 33167851 PMCID: PMC7654587 DOI: 10.1186/s12859-020-03841-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The nonrandom radial organization of eukaryotic chromosome territories (CTs) inside the nucleus plays an important role in nuclear functional compartmentalization. Increasingly, chromosome conformation capture (Hi-C) based approaches are being used to characterize the genome structure of many cell types and conditions. Computational methods to extract 3D arrangements of CTs from this type of pairwise contact data will thus increase our ability to analyze CT organization in a wider variety of biological situations. RESULTS A number of full-scale polymer models have successfully reconstructed the 3D structure of chromosome territories from Hi-C. To supplement such methods, we explore alternative, direct, and less computationally intensive approaches to capture radial CT organization from Hi-C data. We show that we can infer relative chromosome ordering using PCA on a thresholded inter-chromosomal contact matrix. We simulate an ensemble of possible CT arrangements using a force-directed network layout algorithm and propose an approach to integrate additional chromosome properties into our predictions. Our CT radial organization predictions have a high correlation with microscopy imaging data for various cell nucleus geometries (lymphoblastoid, skin fibroblast, and breast epithelial cells), and we can capture previously documented changes in senescent and progeria cells. CONCLUSIONS Our analysis approaches provide rapid and modular approaches to screen for alterations in CT organization across widely available Hi-C data. We demonstrate which stages of the approach can extract meaningful information, and also describe limitations of pairwise contacts alone to predict absolute 3D positions.
Collapse
Affiliation(s)
- Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|