1
|
Lindley SR, Subbaiah KCV, Priyanka F, Poosala P, Ma Y, Jalinous L, West JA, Richardson WA, Thomas TN, Anderson DM. Ribozyme-activated mRNA trans-ligation enables large gene delivery to treat muscular dystrophies. Science 2024; 386:762-767. [PMID: 39541470 DOI: 10.1126/science.adp8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Ribozymes are small catalytic RNA sequences capable of nucleotide-specific self-cleavage found widespread in nature. Ribozyme cleavage generates distinct 2',3'-phosphate and 5'-hydroxyl termini that resemble substrates for recently characterized RNA repair pathways in cells. We report that ribozyme cleavage of two separate mRNAs activated their scarless trans-ligation and translation into full-length protein in eukaryotic cells, a process that we named StitchR (for Stitch RNA). Optimization of StitchR activity in mammalian cells resulted in a ~900-fold increase in protein expression that approached levels observed for genes expressed from single vectors. We demonstrate that StitchR can be harnessed for effective dual adeno-associated virus gene therapies to correct muscular dystrophies by restoring large functional muscle proteins to endogenous levels in vivo.
Collapse
Affiliation(s)
- Sean R Lindley
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Fnu Priyanka
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Pornthida Poosala
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yijie Ma
- CANbridge Pharmaceuticals, Burlington, MA 01803, USA
| | | | - Jason A West
- CANbridge Pharmaceuticals, Burlington, MA 01803, USA
| | - William A Richardson
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tamlyn N Thomas
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Douglas M Anderson
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Mashima R, Takada S, Miyamoto Y. RNA-Based Therapeutic Technology. Int J Mol Sci 2023; 24:15230. [PMID: 37894911 PMCID: PMC10607345 DOI: 10.3390/ijms242015230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
RNA-based therapy has been an expanding area of clinical research since the COVID-19 outbreak. Often, its comparison has been made to DNA-based gene therapy, such as adeno-associated virus- and lentivirus-mediated therapy. These DNA-based therapies show persistent expression, with maximized therapeutic efficacy. However, accumulating data indicate that proper control of gene expression is occasionally required. For example, in cancer immunotherapy, cytokine response syndrome is detrimental for host animals, while excess activation of the immune system induces supraphysiological cytokines. RNA-based therapy seems to be a rather mild therapy, and it has room to fit unmet medical needs, whereas current DNA-based therapy has unclear issues. This review focused on RNA-based therapy for cancer immunotherapy, hematopoietic disorders, and inherited disorders, which have received attention for possible clinical applications.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshitaka Miyamoto
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
3
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
5
|
Cable J, Heard E, Hirose T, Prasanth KV, Chen LL, Henninger JE, Quinodoz SA, Spector DL, Diermeier SD, Porman AM, Kumar D, Feinberg MW, Shen X, Unfried JP, Johnson R, Chen CK, Wilusz JE, Lempradl A, McGeary SE, Wahba L, Pyle AM, Hargrove AE, Simon MD, Marcia M, Przanowska RK, Chang HY, Jaffrey SR, Contreras LM, Chen Q, Shi J, Mendell JT, He L, Song E, Rinn JL, Lalwani MK, Kalem MC, Chuong EB, Maquat LE, Liu X. Noncoding RNAs: biology and applications-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:118-141. [PMID: 34791665 PMCID: PMC9808899 DOI: 10.1111/nyas.14713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.
Collapse
Affiliation(s)
| | - Edith Heard
- European Molecular Biology Laboratory (EMBL), Heidelberg, Heidelberg, Germany
- Collège de France, Paris, France
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China
| | | | - Sofia A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor and Genetics Program, Stony Brook University, Stony Brook, New York
| | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Allison M Porman
- Biochemistry and Molecular Genetics Department, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Juan Pablo Unfried
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), Pamplona, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital; and Department for BioMedical Research University of Bern, Bern, Switzerland
- School of Biology and Environmental Science and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chun-Kan Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adelheid Lempradl
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sean E McGeary
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lamia Wahba
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anna Marie Pyle
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Connecticut and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Róża K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Joshua T Mendell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine; and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Bioland Laboratory; Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-sen University; and Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China
| | - John L Rinn
- Department of Biochemistry, BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado
| | - Mukesh Kumar Lalwani
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland, United Kingdom
| | - Murat Can Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, New York
| | - Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York
| |
Collapse
|