1
|
Peng J, Guo W, Yang D, Yang G, Shu Y, Li Y, Rao L, Yu P, Li L. Research and application discussion of cranial bone model preparation method based on three-dimensional reconstruction and 3D printing technology. Surg Radiol Anat 2024; 46:1595-1604. [PMID: 39120797 DOI: 10.1007/s00276-024-03455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE The aim of this study was to find an alternative method to meet traditional human anatomy teaching and clinical needs in order to solve the problem of cranial specimen attrition and specimen resource shortage due to long-term use. METHODS We performed a computed tomography (CT) scan of a well-preserved male cranial specimen and used Mimics 19.0 software for 3D reconstruction and cranial block separation. Subsequently, we compared the recognition ability of the processed cranial digital model with that of the 3D body digital model and used 3D printing to create the cranial model and compare it with the physical specimen. RESULTS Twenty-two cranial bone block models were obtained, excluding the hyoid bone. Their 3D reconstructed digital models had better bony landmark recognition than the 3D body human digital models, and the differences between the 3D printed models and the physical specimens were minimal. In addition, only one stereolithography (STL) file was required to produce the cranial models, which facilitates repetitive printing at any time. CONCLUSION By isolating cranial bone blocks through 3D reconstruction techniques and preparing high-quality cranial models in combination with 3D printing techniques, this study solves the problem of shortage of cranial teaching specimens for the sustainable development of clinical and medical schools.
Collapse
Affiliation(s)
- Jing Peng
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Huaihua Key Laboratory of Digital Anatomy and 3D Printing for Clinical Translational Research, Huaihua, 418000, Hunan Province, China
| | - Wenjie Guo
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Huaihua Key Laboratory of Digital Anatomy and 3D Printing for Clinical Translational Research, Huaihua, 418000, Hunan Province, China
| | - Deqin Yang
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China
| | - Guohui Yang
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China
| | - Yanhong Shu
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China
| | - Ying Li
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China
| | - Libing Rao
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
- Huaihua Key Laboratory of Digital Anatomy and 3D Printing for Clinical Translational Research, Huaihua, 418000, Hunan Province, China
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China
| | - Penghui Yu
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China.
- Huaihua Key Laboratory of Digital Anatomy and 3D Printing for Clinical Translational Research, Huaihua, 418000, Hunan Province, China.
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China.
| | - Li Li
- Hunan University of Medicine, Huaihua, 418000, Hunan Province, China.
- Huaihua Key Laboratory of Digital Anatomy and 3D Printing for Clinical Translational Research, Huaihua, 418000, Hunan Province, China.
- Innovation and Entrepreneurship Education Center for Clinical Translational Application of Digital Anatomy and 3D Printing Technology in General Colleges and Universities in Hunan Province, Huaihua, 418000, Hunan Province, China.
| |
Collapse
|
2
|
Amantino CF, do Amaral SR, Aires-Fernandes M, Oliani SM, Tedesco AC, Primo FL. Development of 3D skin equivalents for application in photodynamic biostimulation therapy assays using curcumin nanocapsules. Heliyon 2024; 10:e32808. [PMID: 38975186 PMCID: PMC11226835 DOI: 10.1016/j.heliyon.2024.e32808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 μg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).
Collapse
Affiliation(s)
- Camila F. Amantino
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Stéphanie R. do Amaral
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Mariza Aires-Fernandes
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Sonia M. Oliani
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Antonio C. Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, 14010-100, Brazil
| | - Fernando L. Primo
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
3
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
4
|
Kalidindi Y, Ganapathy AK, Nayak Y, Elumalai A, Chen DZ, Bishop G, Sanchez A, Albers B, Shetty AS, Ballard DH. Computed Tomography Attenuation of Three-Dimensional (3D) Printing Materials-Depository to Aid in Constructing 3D-Printed Phantoms. MICROMACHINES 2023; 14:1928. [PMID: 37893365 PMCID: PMC10609050 DOI: 10.3390/mi14101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Three-dimensionally printed phantoms are increasingly used in medical imaging and research due to their cost-effectiveness and customizability, offering valuable alternatives to commercial phantoms. The purpose of this study was to assess the computed tomography (CT) attenuation characteristics of 27 resin materials from Formlabs, a 3D printing equipment and materials manufacturer. Cube phantoms (both solid and hollow constructions) produced with each resin were subjected to CT scanning under varying tube current-time products with attenuation measurements recorded in Hounsfield units (HU). The resins exhibited a wide range of attenuation values (-3.33 to 2666.27 HU), closely mimicking a range of human tissues, from fluids to dense bone structures. The resins also demonstrated consistent attenuation regardless of changes in the tube current. The CT attenuation analysis of FormLabs resins produced an archive of radiological imaging characteristics of photopolymers that can be utilized to construct more accurate tissue mimicking medical phantoms and improve the evaluation of imaging device performance.
Collapse
Affiliation(s)
- Yuktesh Kalidindi
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA;
| | - Aravinda Krishna Ganapathy
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (A.K.G.); (Y.N.); (D.Z.C.)
| | - Yash Nayak
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (A.K.G.); (Y.N.); (D.Z.C.)
| | - Anusha Elumalai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (G.B.); (A.S.); (A.S.S.)
| | - David Z. Chen
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (A.K.G.); (Y.N.); (D.Z.C.)
| | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (G.B.); (A.S.); (A.S.S.)
| | - Adrian Sanchez
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (G.B.); (A.S.); (A.S.S.)
| | - Brian Albers
- St. Louis Children’s Hospital Medical 3D Printing Center, BJC Healthcare, St. Louis, MO 63110, USA;
| | - Anup S. Shetty
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (G.B.); (A.S.); (A.S.S.)
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (G.B.); (A.S.); (A.S.S.)
| |
Collapse
|
5
|
Chen D, Ganapathy A, Abraham N, Marquis KM, Bishop GL, Rybicki FJ, Hoegger MJ, Ballard DH. 3D printing exposure and perception in radiology residency: survey results of radiology chief residents. 3D Print Med 2023; 9:13. [PMID: 37103761 PMCID: PMC10133904 DOI: 10.1186/s41205-023-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to summarize a survey of radiology chief residents focused on 3D printing in radiology. MATERIALS AND METHODS An online survey was distributed to chief residents in North American radiology residencies by subgroups of the Association of University Radiologists. The survey included a subset of questions focused on the clinical use of 3D printing and perceptions of the role of 3D printing and radiology. Respondents were asked to define the role of 3D printing at their institution and asked about the potential role of clinical 3D printing in radiology and radiology residencies. RESULTS 152 individual responses from 90 programs were provided, with a 46% overall program response rate (n = 90/194 radiology residencies). Most programs had 3D printing at their institution (60%; n = 54/90 programs). Among the institutions that perform 3D printing, 33% (n = 18/54) have structured opportunities for resident contribution. Most residents (60%; n = 91/152 respondents) feel they would benefit from 3D printing exposure or educational material. 56% of residents (n = 84/151) believed clinical 3D printing should be centered in radiology departments. 22% of residents (n = 34/151) believed it would increase communication and improve relationships between radiology and surgery colleagues. A minority (5%; 7/151) believe 3D printing is too costly, time-consuming, or outside a radiologist's scope of practice. CONCLUSIONS A majority of surveyed chief residents in accredited radiology residencies believe they would benefit from exposure to 3D printing in residency. 3D printing education and integration would be a valuable addition to current radiology residency program curricula.
Collapse
Affiliation(s)
- David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nihil Abraham
- Department of Internal Medicine, University of California-Riverside School of Medicine, Riverside, CA, USA
| | - Kaitlin M Marquis
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace L Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Mozafari M. Editorial Preface for Special Issue: Additive Manufacturing of Biomaterials. Methods 2023; 214:46-47. [PMID: 37088172 DOI: 10.1016/j.ymeth.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Affiliation(s)
- Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
7
|
Hellman S, Frisch P, Platzman A, Booth P. 3D Printing in a hospital: Centralized clinical implementation and applications for comprehensive care. Digit Health 2023; 9:20552076231221899. [PMID: 38130801 PMCID: PMC10734340 DOI: 10.1177/20552076231221899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
This educational article discusses the use of 3D printing or additive manufacturing in hospitals, not just for rapid prototyping but also for creating end-use products, such as clinical, diagnostic, and educational tools. The flexibility of 3D printing is valuable for creating patient-specific medical devices, custom surgical tools, anatomical models, implants, research tools and on-demand parts, among others. The advantages of and requirements for implementing a clinical 3D printing service in a hospital environment are discussed, including centralized 3D printing management, technology, example use cases, and considerations for implementation. The article provides an overview for other institutions to reference in setting up or organizing their clinical 3D printing services and is applicable to general hospitals or various sub-specialty practices.
Collapse
Affiliation(s)
- Samuel Hellman
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Frisch
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Paul Booth
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Yang J. Technology-Enhanced Preclinical Medical Education (Anatomy, Histology and Occasionally, Biochemistry): A Practical Guide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1431:65-93. [PMID: 37644288 DOI: 10.1007/978-3-031-36727-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The recent explosion of technological innovations in mobile technology, virtual reality (VR), digital dissection, online learning platform, 3D printing, and augmented reality (AR) has provided new avenues for improving preclinical education, particularly in anatomy and histology education. Anatomy and histology are fundamental components of medical education that teach students the essential knowledge of human body structure and organization. However, these subjects are widely considered to be some of the most difficult disciplines for healthcare students. Students often face challenges in areas such as the complexity and overwhelming volume of knowledge, difficulties in visualizing body structures, navigating and identifying tissue specimens, limited exposure to learning materials, and lack of clinical relevance. The COVID-19 pandemic has further exacerbated the situation by reducing face-to-face teaching opportunities and affecting the availability of body donations for medical education.To overcome these challenges, educators have integrated various educational technologies, such as virtual reality, digital 3D anatomy apps, 3D printing, and AI chatbots, into preclinical education. These technologies have effectively improved students' learning experiences and knowledge retention. However, the integration of technologies into preclinical education requires appropriate pedagogical approaches and logistics to align with educational theories and achieve the intended learning outcomes.The chapter provides practical guidance and examples for integrating technologies into anatomy, histology, and biochemistry preclinical education. The author emphasizes that every technology has its own benefits and limitations and is best suited to specific learning scenarios. Therefore, it is recommended that educators and students should utilize multiple modalities for teaching and learning to achieve the best outcomes. The chapter also acknowledges that cadaver-based anatomy education is essential and proposes that educational technologies can serve as a crucial complement for promoting active learning, problem solving, knowledge application, and enhancing conventional cadaver-based education.
Collapse
Affiliation(s)
- Jian Yang
- The School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|