1
|
Granger SL, Sharma R, Kaushik V, Razzaghi M, Honda M, Gaur P, Bhat DS, Labenz SM, Heinen JE, Williams BA, Tabei SMA, Wlodarski MW, Antony E, Spies M. Human hnRNPA1 reorganizes telomere-bound replication protein A. Nucleic Acids Res 2024; 52:12422-12437. [PMID: 39329264 DOI: 10.1093/nar/gkae834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Human replication protein A (RPA) is a heterotrimeric ssDNA binding protein responsible for many aspects of cellular DNA metabolism. Dynamic interactions of the four RPA DNA binding domains (DBDs) with DNA control replacement of RPA by downstream proteins in various cellular metabolic pathways. RPA plays several important functions at telomeres where it binds to and melts telomeric G-quadruplexes, non-canonical DNA structures formed at the G-rich telomeric ssDNA overhangs. Here, we combine single-molecule total internal reflection fluorescence microscopy (smTIRFM) and mass photometry (MP) with biophysical and biochemical analyses to demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) specifically remodels RPA bound to telomeric ssDNA by dampening the RPA configurational dynamics and forming a ternary complex. Uniquely, among hnRNPA1 target RNAs, telomeric repeat-containing RNA (TERRA) is selectively capable of releasing hnRNPA1 from the RPA-telomeric DNA complex. We speculate that this telomere specific RPA-DNA-hnRNPA1 complex is an important structure in telomere protection.
Collapse
Affiliation(s)
- Sophie L Granger
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, IA City, IA 52242, USA
| | - Richa Sharma
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1250 Carr Lane, St. Louis, MO 63104, USA
| | - Mortezaali Razzaghi
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, IA City, IA 52242, USA
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, IA City, IA 52242, USA
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, IA City, IA 52242, USA
| | - Divya S Bhat
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, IA City, IA 52242, USA
| | - Sabryn M Labenz
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Jenna E Heinen
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Blaine A Williams
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1250 Carr Lane, St. Louis, MO 63104, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, IA City, IA 52242, USA
| |
Collapse
|
2
|
Kuppa S, Corless E, Caldwell CC, Spies M, Antony E. Generation of site-specifically labelled fluorescent human XPA to investigate DNA binding dynamics during nucleotide excision repair. Methods 2024; 224:47-53. [PMID: 38387709 PMCID: PMC10960328 DOI: 10.1016/j.ymeth.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.
Collapse
Affiliation(s)
- Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Elliot Corless
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Colleen C Caldwell
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|