1
|
Donoghue SE, Heath O, Pitt J, Hong KM, Fuller M, Smith J. Free urinary sialic acid levels may be elevated in patients with pneumococcal sepsis. Clin Chem Lab Med 2022; 60:1855-1858. [PMID: 36000484 DOI: 10.1515/cclm-2022-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Urine free sialic acid (UFSA) is an important diagnostic biomarker for sialuria (GNE variants) and infantile sialic acid storage disease/Salla disease (SLC17A5 variants). Traditionally, UFSA has been measured using specific single-plex methodology in relatively small cohorts of patients with clinical symptoms suggestive of these disorders. The use of multiplex tandem mass spectrometry urine screening (UMSMS) has meant that UFSA can be measured semi-quantitatively in a much larger cohort of patients being investigated for suspected metabolic disorders. We hypothesised that the neuraminidase of Streptococcus pneumoniae may release free sialic acid from endogenous sialylated glycoconjugates and result in increased UFSA levels. METHODS We conducted a retrospective review of clinical records of patients who were identified as having S. pneumoniae infection and who also had UMSMS at the time of their acute infection. RESULTS We identified three cases of increased UFSA detected by UMSMS screening that were secondary to S. pneumoniae sepsis. Additional testing ruled out genetic causes of increased UFSA in the first patient. All three patients had overwhelming sepsis with multiorgan dysfunction which was fatal. Glycosylation abnormalities consistent with the removal of sialic acid were demonstrated in serum transferrin patterns in one patient. CONCLUSIONS We have demonstrated in a retrospective cohort that elevation of UFSA levels have been observed in cases of S. pneumoniae sepsis. This expands our knowledge of UFSA as a biomarker in human disease. This research demonstrates that infection with organisms with neuraminidase activity should be considered in patients with unexplained increases in UFSA.
Collapse
Affiliation(s)
- Sarah E Donoghue
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Oliver Heath
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - James Pitt
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kai Mun Hong
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Joel Smith
- Laboratory Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
van den Bosch J, Oemardien LF, Srebniak MI, Piraud M, Huijmans JGM, Verheijen FW, Ruijter GJG. Prenatal screening of sialic acid storage disease and confirmation in cultured fibroblasts by LC-MS/MS. J Inherit Metab Dis 2011; 34:1069-73. [PMID: 21617927 PMCID: PMC3173643 DOI: 10.1007/s10545-011-9351-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022]
Abstract
Sialic acid storage disease (SASD) is an inborn error resulting from defects in the lysosomal membrane protein sialin. The SASD phenotypical spectrum ranges from a severe presentation, infantile sialic acid storage disease (ISSD) which may present as hydrops fetalis, to a relatively mild form, Salla disease. Screening for SASD is performed by determination of free sialic acid (FSA) in urine or amniotic fluid supernatant (AFS). Subsequent diagnosis of SASD is performed by quantification of FSA in cultured fibroblasts and by mutation analysis of the sialin gene, SLC17A5. We describe simple quantitative procedures to determine FSA as well as conjugated sialic acid in AFS, and FSA in cultured fibroblasts, using isotope dilution ((13)C(3)-sialic acid) and multiple reaction monitoring LC-ESI-MS/MS. The whole procedure can be performed in 2-4 h. Reference values in AFS were 0-8.2 μmol/L for 15-25 weeks of gestation and 3.2-12.0 μmol/L for 26-38 weeks of gestation. In AFS samples from five fetuses affected with ISSD FSA was 23.9-58.9 μmol/L demonstrating that this method is able to discriminate ISSD pregnancies from normal ones. The method was also validated for determination of FSA in fibroblast homogenates. FSA in SASD fibroblasts (ISSD; 20-154 nmol/mg protein, intermediate SASD; 12.9-15.1 nmol/mg, Salla disease; 5.9-7.4 nmol/mg) was clearly elevated compared to normal controls (0.3-2.2 nmol/mg). In conclusion, we report simple quantitative procedures to determine FSA in AFS and cultured fibroblasts improving both prenatal diagnostic efficacy for ISSD as well as confirmatory testing in cultured fibroblasts following initial screening in urine or AFS.
Collapse
Affiliation(s)
- Jeroen van den Bosch
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Linda F. Oemardien
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Malgorzata I. Srebniak
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Monique Piraud
- Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Jan G. M. Huijmans
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Frans W. Verheijen
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - George J. G. Ruijter
- Department Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
3
|
Das AM, Illsinger S, Ehrich JHH. Lysosomale Transportdefekte. Monatsschr Kinderheilkd 2006. [DOI: 10.1007/s00112-006-1407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|