1
|
Shelton GD, Mickelson JR, Friedenberg SG, Cullen JN, Mehra JM, Guo LT, Minor KM. Multi-Allelic Mitochondrial DNA Deletions in an Adult Dog with Chronic Weakness, Exercise Intolerance and Lactic Acidemia. Animals (Basel) 2024; 14:1946. [PMID: 38998058 PMCID: PMC11240360 DOI: 10.3390/ani14131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: An adult dog was presented to a board-certified veterinary neurologist for evaluation of chronic weakness, exercise intolerance and lactic acidemia. (2) Methods: A mitochondrial myopathy was diagnosed based on the histological and histochemical phenotype of numerous COX-negative muscle fibers. Whole-genome sequencing established the presence of multiple extended deletions in the mitochondrial DNA (mtDNA), with the highest prevalence between the 1-11 kb positions of the approximately 16 kb mitochondrial chromosome. Such findings are typically suggestive of an underlying nuclear genome variant affecting mitochondrial replication, repair, or metabolism. (3) Results: Numerous variants in the nuclear genome unique to the case were identified in the whole-genome sequence data, and one, the insertion of a DYNLT1 retrogene, whose parent gene is a regulator of the mitochondrial voltage-dependent anion channel (VDAC), was considered a plausible causal variant. (4) Conclusions: Here, we add mitochondrial deletion disorders to the spectrum of myopathies affecting adult dogs.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaya M Mehra
- VCA Animal Care Center of Sonoma County, Rohnert Park, CA 94928, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | - Katie M Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
2
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
3
|
Li Y, Shen J, Cheng CS, Gao H, Zhao J, Chen L. Overexpression of pyruvate dehydrogenase phosphatase 1 promotes the progression of pancreatic adenocarcinoma by regulating energy-related AMPK/mTOR signaling. Cell Biosci 2020; 10:95. [PMID: 32782783 PMCID: PMC7412669 DOI: 10.1186/s13578-020-00457-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human pyruvate dehydrogenase phosphatase 1 (PDP1) plays an important physiological role in energy metabolism; however, its expression and function in human pancreatic adenocarcinoma (PDAC) remain unknown. This study aimed to investigate the expression pattern and mechanisms of action of PDP1 in human PDAC. Methods The expression pattern of PDP1 in PDAC was determined, and its correlation with patient survival was analyzed. Ectopic expression or knockdown of PDP1 was performed, and in vitro proliferation and migration, as well as in vivo tumor growth of PDAC, were measured. The mechanism was studied by biochemical approaches. Results PDP1 was overexpressed in human PDAC samples, and high expression of PDP1 correlated with poor overall and disease-free survival of PDAC patients. PDP1 promoted the proliferation, colony formation, and invasion of PDAC cells in vitro and facilitated orthotopic tumor growth in vivo. PDP1 accelerated intracellular ATP production, leading to sufficient energy to support rapid cancer progression. mTOR activation was responsible for the PDP1-induced tumor cell proliferation and invasion in PDAC. AMPK was downregulated by PDP1 overexpression, resulting in mTOR activation and cancer progression. Conclusion Our findings suggested that PDP1 could be a promising diagnostic and therapeutic target for anti-PDAC treatment.
Collapse
Affiliation(s)
- Ye Li
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jia Shen
- Department of Oncology, First People's Hospital of Pinghu, Zhejiang, 314200 China
| | - Chien-Shan Cheng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - HuiFeng Gao
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jiangang Zhao
- Department of Oncology, Shaoxing Central Hospital, Zhejiang, 312030 China
| | - Lianyu Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
4
|
Rosenstein PG, Tennent-Brown BS, Hughes D. Clinical use of plasma lactate concentration. Part 1: Physiology, pathophysiology, and measurement. J Vet Emerg Crit Care (San Antonio) 2018. [PMID: 29533512 DOI: 10.1111/vec.12708] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review the current literature with respect to the physiology, pathophysiology, and measurement of lactate. DATA SOURCES Data were sourced from veterinary and human clinical trials, retrospective studies, experimental studies, and review articles. Articles were retrieved without date restrictions and were sourced primarily via PubMed, Scopus, and CAB Abstracts as well as by manual selection. HUMAN AND VETERINARY DATA SYNTHESIS Lactate is an important energy storage molecule, the production of which preserves cellular energy production and mitigates the acidosis from ATP hydrolysis. Although the most common cause of hyperlactatemia is inadequate tissue oxygen delivery, hyperlactatemia can, and does occur in the face of apparently adequate oxygen supply. At a cellular level, the pathogenesis of hyperlactatemia varies widely depending on the underlying cause. Microcirculatory dysfunction, mitochondrial dysfunction, and epinephrine-mediated stimulation of Na+ -K+ -ATPase pumps are likely important contributors to hyperlactatemia in critically ill patients. Ultimately, hyperlactatemia is a marker of altered cellular bioenergetics. CONCLUSION The etiology of hyperlactatemia is complex and multifactorial. Understanding the relevant pathophysiology is helpful when characterizing hyperlactatemia in clinical patients.
Collapse
Affiliation(s)
- Patricia G Rosenstein
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Brett S Tennent-Brown
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Dez Hughes
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
5
|
Gillespie Í, Rosenstein PG, Hughes D. Update: Clinical Use of Plasma Lactate. Vet Clin North Am Small Anim Pract 2016; 47:325-342. [PMID: 27914760 DOI: 10.1016/j.cvsm.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lactate is an essential, versatile metabolic fuel in cellular bioenergetics. In human emergency and critical care, lactate is used as a biomarker and therapeutic endpoint and evidence is growing in veterinary medicine supporting its clinical utility. Lactate production is a protective response providing ongoing cellular energy during tissue hypoperfusion or hypoxia and mitigating acidosis. Hence, hyperlactatemia is closely associated with disease severity but it is an epiphenomenon as the body attempts to protect itself. This article reviews lactate biochemistry, kinetics, pathophysiology, some practical aspects of measuring lactate, as well as its use in diagnosis, prognosis, and monitoring.
Collapse
Affiliation(s)
- Íde Gillespie
- Emergency and Critical Care Service, UVet Werribee Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Melbourne, Victoria 3030, Australia
| | - Patricia G Rosenstein
- Emergency and Critical Care Service, UVet Werribee Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Melbourne, Victoria 3030, Australia
| | - Dez Hughes
- Emergency and Critical Care Service, UVet Werribee Animal Hospital, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, Melbourne, Victoria 3030, Australia.
| |
Collapse
|
6
|
E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A 2016; 113:10998-1003. [PMID: 27621446 DOI: 10.1073/pnas.1602754113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes. E4F1 dysfunction results in 80% decrease of PDH activity and alterations of pyruvate metabolism. Genetic inactivation of murine E4f1 in striated muscles results in viable animals that show low muscle PDH activity, severe endurance defects, and chronic lactic acidemia, recapitulating some clinical symptoms described in PDC-deficient patients. These phenotypes were attenuated by pharmacological stimulation of PDH or by a ketogenic diet, two treatments used for PDH deficiencies. Taken together, these data identify E4F1 as a master regulator of the PDC.
Collapse
|
7
|
Di Mauro FM, Schoeffler GL. Point of Care Measurement of Lactate. Top Companion Anim Med 2016; 31:35-43. [PMID: 27451047 DOI: 10.1053/j.tcam.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 01/25/2023]
Abstract
Lactate is generated as a consequence of anaerobic glycolysis by all tissues of the body. Increased l-lactate, the isoform produced by most mammals, reflects increased anaerobic metabolism secondary to tissue hypoperfusion or tissue hypoxia in most clinical situations, and is called type A lactic acidosis. The utility of lactate measurement and serial lactate monitoring in veterinary patients has been demonstrated in multiple studies. Blood lactate concentration is significantly elevated in many disease processes including septic peritonitis, immune-mediated hemolytic anemia, Babesiosis, trauma, gastric dilation and volvulus, and intracranial disease. Lactate clearance can be used to assess response to fluid therapy, cardiovascular therapeutics, and blood product transfusion in patients affected by type A lactic acidosis. Lactate concentration in peritoneal, pericardial, and synovial fluid can also be used as a diagnostic tool. Point of care analyzers such as the Lactate Pro, Lactate Scout, Accutrend, iSTAT, and Lactate Plus have been shown to be accurate lactate measurement instruments in small animal patients.
Collapse
Affiliation(s)
| | - Gretchen Lee Schoeffler
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Shelton GD. Routine and specialized laboratory testing for the diagnosis of neuromuscular diseases in dogs and cats. Vet Clin Pathol 2010; 39:278-95. [PMID: 20726955 DOI: 10.1111/j.1939-165x.2010.00244.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The diagnosis of neuromuscular diseases can be challenging. The first step is recognition that the disease involves the neuromuscular system (muscle, neuromuscular junction, peripheral nerve, and ventral horn cells of the spinal cord). Many neuromuscular diseases share clinical signs and cannot be distinguished based on clinical examination. Routine laboratory screening, including a CBC, biochemical profile, and urinalysis, can identify some of the most common systemic abnormalities that cause muscle weakness and myalgia, such as hypo- and hyperglycemia, electrolyte disorders, or thyroid abnormalities, and may suggest a specific diagnosis, such as diabetes mellitus, hypo- or hyperadrenocorticism, renal failure, or hypothyroidism. Increased creatine kinase activity, increased cardiac troponin I concentration, and myoglobinuria are useful in detecting skeletal and cardiac muscle damage. Identification of acetylcholine receptor antibodies is diagnostic for acquired myasthenia gravis. For primary muscle or peripheral nerve diseases, tissue biopsy is the most direct way to determine specific pathology, correctly classify the disease, and determine the course of additional laboratory testing. For example, inflammatory, necrotizing, dystrophic, metabolic, or congenital myopathies require different laboratory testing procedures for further characterization. Many neuromuscular diseases are inherited or breed-associated, and DNA-based tests may already be established or may be feasible to develop after the disorder has been accurately characterized. This review focuses on both routine and specialized laboratory testing necessary to reach a definitive diagnosis and determine an accurate prognosis for neuromuscular diseases.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Cameron JM, Maj M, Levandovskiy V, Barnett CP, Blaser S, Mackay N, Raiman J, Feigenbaum A, Schulze A, Robinson BH. Pyruvate dehydrogenase phosphatase 1 (PDP1) null mutation produces a lethal infantile phenotype. Hum Genet 2009; 125:319-26. [PMID: 19184109 DOI: 10.1007/s00439-009-0629-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/18/2009] [Indexed: 11/30/2022]
Abstract
Pyruvate dehydrogenase phosphatase deficiency has previously only been confirmed at the molecular level in two brothers and two breeds of dog with exercise intolerance. A female patient, who died at 6 months, presented with lactic acidemia in the neonatal period with serum lactate levels ranging from 2.5 to 17 mM. Failure of dichloroacetate to activate the PDH complex in skin fibroblasts was evident, but not in early passages. A homozygous c.277G > T (p.E93X) nonsense mutation in the PDP1 gene was identified in genomic DNA and immunoblotting showed a complete absence of PDP1 protein in mitochondria. Native PDHC activity could be restored by the addition of either recombinant PDP1 or PDP2. This highlights the role of PDP2, the second phosphatase isoform, in PDP1-deficient patients for the first time. We conclude that the severity of the clinical course associated with PDP1 deficiency can be quite variable depending on the exact nature of the molecular defect.
Collapse
Affiliation(s)
- J M Cameron
- The Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|