1
|
Ketata I, Ellouz E. From pathological mechanisms in Krabbe disease to cutting-edge therapy: A comprehensive review. Neuropathology 2024; 44:255-277. [PMID: 38444347 DOI: 10.1111/neup.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Since its initial documentation by Knud Krabbe in 1916, numerous studies have scrutinized the characteristics of Krabbe disease (KD) until the identification of the mutation in the GALC gene. In alignment with that, we investigated the natural history of KD spanning eight decades to gain a deeper understanding of the evolutionary trajectory of its mechanisms. Through our comprehensive analysis, we unearthed additional novel elements in molecular biology involving the micropathological mechanism of the disease. This review offers an updated perspective on the metabolic disorder that defines KD. Recently, extracellular vesicles (EVs), autophagy impairment, and α-synuclein have emerged as pivotal players in the neuropathological processes. EVs might serve as a cellular mechanism to avoid or alleviate the detrimental impacts of excessive toxic psychosine levels, and extracting EVs could contribute to synapse dysfunction. Autophagy impairment was found to be independent of psychosine and reliant on AKT and B-cell lymphoma 2. Additionally, α-synuclein has been recognized for inducing cellular death and dysfunction in common biological pathways. Our objective is to assess the effectiveness of advanced therapies in addressing this particular condition. While hematopoietic stem cells have been a primary treatment, its administration proves challenging, particularly in the presymptomatic phase. In this review, we have compiled information from over 10 therapy trials, comparing them based on their benefits and disadvantage.
Collapse
Affiliation(s)
- Imen Ketata
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Emna Ellouz
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
2
|
Su Y, Wei L, Wang L, Xu P, Mo M. Splicing mutations of GALC in adult patient with adult-onset Krabbe disease: case report and review of literature. Neurocase 2024; 30:63-67. [PMID: 38762762 DOI: 10.1080/13554794.2024.2354541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.
Collapse
Affiliation(s)
- Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
González-Irazabal Y, Hernandez de Abajo G, Martínez-Morillo E. Identifying and overcoming barriers to harmonize newborn screening programs through consensus strategies. Crit Rev Clin Lab Sci 2020; 58:29-48. [PMID: 32692303 DOI: 10.1080/10408363.2020.1781778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The benefits of newborn screening (NBS) programs have been widely demonstrated after more than 50 years since first established. NBS enables the detection of the disease before the child shows clinical symptoms, allowing clinicians to act early and facilitating appropriate interventions to prevent or improve adverse outcomes. Delay or lack of medical intervention in these infants may lead to developmental delay, severe disability, or premature death. NBS programs have grown exponentially both in the number of diseases screened and in complexity, creating controversy. New technological advances, as well as the emergence of new therapies that require early disease detection, have allowed for the inclusion of new diseases in NBS screening programs. However, different countries and even different regions have in turn adopted very diverse strategies and diagnostic algorithms when it comes to NBS. There are many factors responsible for these differences, such as the health care system, available funds, local politics, professional groups, and others that depend on the position taken by policymakers. These differences in NBS have led to discrepancies in detection opportunities between countries or regions, which has led to many varied attempts to harmonize NBS programs but not all have been equally satisfactory. Some countries have achieved good results, but always within their borders. Therefore, there are still many differences between NBS programs at the international level that must be overcome. These advances have also brought considerable uncertainty regarding ethical aspects and balance between benefits and harms. For this reason, and so that the situation of disparity in the global NBS programs can be minimized, health authorities must work to develop uniform criteria for decision-making and to take a further step toward harmonization. To do so, it is necessary to identify the crucial factors that lead to the adoption of different NBS programs worldwide, in order to analyze their influence and find ways to overcome them.
Collapse
|
4
|
Metabolomic Studies of Lipid Storage Disorders, with Special Reference to Niemann-Pick Type C Disease: A Critical Review with Future Perspectives. Int J Mol Sci 2020; 21:ijms21072533. [PMID: 32260582 PMCID: PMC7178094 DOI: 10.3390/ijms21072533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are predominantly very rare recessive autosomal neurodegenerative diseases.Sphingolipidoses, a sub-group of LSDs, result from defects in lysosomal enzymes involved in sphingolipid catabolism, and feature disrupted storage systems which trigger complex pathogenic cascades with other organelles collaterally affected. This process leads to cell dysfunction and death, particularly in the central nervous system. One valuable approach to gaining insights into the global impact of lysosomal dysfunction is through metabolomics, which represents a discovery tool for investigating disease-induced modifications in the patterns of large numbers of simultaneously-analysed metabolites, which also features the identification of biomarkers Here, the scope and applications of metabolomics strategies to the investigation of sphingolipidoses is explored in order to facilitate our understanding of the biomolecular basis of these conditions. This review therefore surveys the benefits of applying ’state-of-the-art’ metabolomics strategies, both univariate and multivariate, to sphingolipidoses, particularly Niemann-Pick type C disease. Relevant limitations of these techniques are also discussed, along with the latest advances and developments. We conclude that metabolomics strategies are highly valuable, distinctive bioanalytical techniques for probing LSDs, most especially for the detection and validation of potential biomarkers. They also show much promise for monitoring disease progression and the evaluation of therapeutic strategies and targets.
Collapse
|
5
|
Calderwood L, Wenger DA, Matern D, Dahmoush H, Watiker V, Lee C. Rare Saposin A deficiency: Novel variant and psychosine analysis. Mol Genet Metab 2020; 129:161-164. [PMID: 31439510 DOI: 10.1016/j.ymgme.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/28/2022]
Abstract
Saposin A is a post-translation product of the prosaposin (PSAP) gene that serves as an activator protein of the galactocerebrosidase (GALC) enzyme, and is necessary for the degradation of certain glycosphingolipids. Deficiency of saposin A leads to a clinical picture identical to that of early-infantile Krabbe disease caused by GALC enzyme deficiency. Galactosylsphingosine, also known as psychosine, is a substrate of the GALC enzyme that is known to be elevated in classic Krabbe disease. We present the case of an 18-month-old male with clinical and radiological findings concerning for Krabbe disease who had preserved GALC enzyme activity and negative GALC gene sequencing, but was found to have a homozygous variant, c.257 T > A (p.I86N), in the saposin A peptide of PSAP. Psychosine determination on dried blood spot at 18 months of age was elevated to 12 nmol/L (normal <3 nmol/L). We present this case to add to the literature on the rare diagnosis of atypical Krabbe disease due to saposin A deficiency, to report a novel presumed pathogenic variant within PSAP, and to suggest that individuals with saposin A deficiency may have elevated levels of psychosine, similar to children with classic Krabbe disease due to GALC deficiency.
Collapse
Affiliation(s)
- Laurel Calderwood
- Lucile Packard Children's Hospital Stanford, 725 Welch Road, Palo Alto, CA 94304, United States of America; Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America.
| | - David A Wenger
- Department of Neurology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, United States of America.
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America.
| | - Hisham Dahmoush
- Lucile Packard Children's Hospital Stanford, 725 Welch Road, Palo Alto, CA 94304, United States of America; Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America.
| | - Valerie Watiker
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, United States of America.
| | - Chung Lee
- Lucile Packard Children's Hospital Stanford, 725 Welch Road, Palo Alto, CA 94304, United States of America; Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America.
| |
Collapse
|
6
|
Tuncer FN, Iseri SAU, Yapici Z, Demir M, Karaca M, Calik M. A novel homozygous GALC variant has been associated with Krabbe disease in a consanguineous family. Neurol Sci 2018; 39:2123-2128. [PMID: 30209698 DOI: 10.1007/s10072-018-3556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
Krabbe disease (KD) or globoid cell leukodystrophy is an autosomal recessive lysosomal storage disorder involving the white matter of the peripheral and the central nervous systems. It is caused by a deficiency of galactocerebrosidase enzyme activity. The most common manifestation is the classical early onset KD that leads to patient's loss before the age of 2. Herein, we report the evaluation of a consanguineous family with three affected children manifesting severe neurological findings that ended with death before the age of 2, in an attempt to provide genetic diagnosis to the family. One of the children underwent detailed physical and neurological examinations, including brain magnetic resonance imaging (MRI) and scalp electroencephalography (EEG) evaluations. GALC genetic testing on this child enabled identification of a novel homozygous variant (NM_000153.3: c.1394C>T; p.(Thr465Ile)), which confirmed diagnosis as KD. Familial segregation of this variant was performed by PCR amplification and Sanger sequencing that revealed the parents as heterozygous carriers. We believe this novel GALC variant will not only help in genetic counseling to this family but will also aid in identification of future KD cases.
Collapse
Affiliation(s)
- Feyza Nur Tuncer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad., 34093, Fatih/Istanbul, Turkey.
| | - Sibel Aylin Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad., 34093, Fatih/Istanbul, Turkey
| | - Zuhal Yapici
- Division of Child Neurology, Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Mahmut Demir
- Department of Pediatrics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Meryem Karaca
- Pediatric Metabolism Disorder Department, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Mustafa Calik
- Department of Pediatric Neurology, Harran University Faculty of Medicine, Sanliurfa, Turkey
| |
Collapse
|
7
|
Abstract
Newborn screening in the United States is an important public health measure to provide early detection for specified disorders when early treatment is both possible and beneficial. As technology improves, newborn screening can be offered for many more conditions. In the past 10 years, screening has expanded to include severe combined immunodeficiency, congenital heart disease, lysosomal storage disease, and X-linked adrenoleukodystrophy. This article reviews the current state of newborn screening with updates on recent developments. [Pediatr Ann. 2018;47(5):e187-e190.].
Collapse
|
8
|
Graziano ACE, Pannuzzo G, Avola R, Cardile V. Chaperones as potential therapeutics for Krabbe disease. J Neurosci Res 2017; 94:1220-30. [PMID: 27638605 DOI: 10.1002/jnr.23755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
9
|
Africa L, Margollicci M, Salvatore S, Shalbafan B, Peruzzi L, Togha M, Sorrentino V, Federico A. Compound heterozygosity in the GALC gene in a late onset Iranian patient with spastic paraparesis, peripheral neuropathy and leukoencephalopathy. Neurol Sci 2017; 38:1721-1722. [PMID: 28547031 DOI: 10.1007/s10072-017-2986-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/28/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Liana Africa
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Maria Margollicci
- Department of Molecular and Developmental Medicine, Medical School, University of Siena, Siena, Italy
| | - Simona Salvatore
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | | | - Luana Peruzzi
- Department of Biotechnology, Chemistry and Pharmacy, Medical School, University of Siena, Siena, Italy
| | - Mansoureh Togha
- Headache Department, Iranian Center for Neurological Research, Neuroscience Institute and Neurology Department, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Medical School, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
10
|
Dai L, Han T, Yang X, Wang X, Li J, Lu J, Zhang W, Ren X, Fang F. WITHDRAWN: Clinical and molecular analysis of six novel GALC mutations identified in 7 Chinese children with Krabbe disease. Brain Dev 2017:S0387-7604(17)30145-6. [PMID: 28552323 DOI: 10.1016/j.braindev.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Lifang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Tongli Han
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xinying Yang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xu Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Junlan Lu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Wuchang Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
11
|
Abstract
Krabbe disease (galactocerebrosidase deficiency) is an inherited leukodystrophy that results in severe neurological defects due to altered myelination. Classically, disease onset is within the first year of life. Juvenile and adult-onset cases may have less classic presentations, making diagnosis difficult and often delayed. Here, we review the literature to demonstrate the hetereogeneity of presenting symptoms across all age groups. We also discuss diagnostic approach, emphasizing variation in biochemical, functional, and genetic results among Krabbe phenotypes. Better understanding of the various Krabbe disease phenotypes is critical to facilitate timely diagnosis and appropriate treatment of this clinically heterogeneous disorder. Variabilité phénotypique dans la maladie de Krabbe au cours de la vie du patient. La maladie de Krabbe (déficit en galactocérébrosidase) est une leukodystrophie héréditaire qui donne lieu à des déficits neurologiques sévères dus à un trouble de la myélinisation. Chez les cas dont la présentation est classique, la maladie débute au cours de la première année de vie. Si la maladie commence chez un adolescent ou un adulte, le mode de présentation peut-ětre moins classique, ce qui rend le diagnostic difficile et souvent tardif. Nous analysons les articles traitant du sujet pour démontrer l'hétérogénéité des symptômes au moment de la première consultation et ceci dans tous les groupes d'âge. Nous discutons également de l'approche diagnostique en mettant l'emphase sur la variation des résultats biochimiques, fonctionnels et génétiques des différents phénotypes dans la maladie de Krabbe. Une meilleure compréhension des différents phénotypes est cruciale pour faciliter un diagnostic précoce et un traitement approprié de cette maladie dont le mode de présentation clinique est hétérogène.
Collapse
|
12
|
Khadilkar S, Jaggi S, Patel B, Yadav R, Hanagandi P, Faria do Amaral LL. A practical approach to diseases affecting dentate nuclei. Clin Radiol 2015; 71:107-19. [PMID: 26577296 DOI: 10.1016/j.crad.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 01/29/2023]
Abstract
A wide variety of diseases affect the dentate nuclei. When faced with the radiological demonstration of signal changes in the dentate nuclei, radiologists and clinical neurologists have to sieve through the many possibilities, which they do not encounter on a regular basis. This task can be challenging, and therefore, developing a clinical, radiological, and laboratory approach is important. Information on the topic is scattered and the subject has not yet been reviewed. In this review, a combined clinicoradiological approach is presented. The signal changes in T1, T2, fluid-attenuated inversion recovery (FLAIR), diffusion, susceptibility weighted, and gadolinium-enhanced images can give specific or highly suggestive patterns, which are illustrated. The role of computed tomography (CT) in the diagnostic process is discussed. Specific radiological patterns do not exist in a significant proportion of patients where the clinical and laboratory analysis becomes important. In this review, we group the clinical constellations to narrow down the differential diagnosis and highlight the diagnostic clinical signs, such as tendon xanthomas and Kayser-Fleischer rings. As will be seen, a number of these conditions are potentially reversible, and hence, their early diagnosis is desirable. Finally, key diagnostic tests and available therapies are outlined. The practical approach thus begins with the radiologist and winds its way through the clinician, towards carefully selected diagnostic tests defining the therapy options.
Collapse
Affiliation(s)
- S Khadilkar
- Department of Neurology, Grant Medical College and Sir J. J. Group of Hospitals, Mumbai, India.
| | - S Jaggi
- Department of Radiology, Bombay Hospital and Medical Research Centre, Mumbai, India
| | - B Patel
- Neurology Department, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| | - R Yadav
- Neurology Department, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| | - P Hanagandi
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Canada
| | - L L Faria do Amaral
- Department of Neuroradiology - Medimagem, Hospital da Beneficencia Portuguesa de Sao Paulo, Brazil
| |
Collapse
|
13
|
|
14
|
Abstract
The autosomal recessive inherited Krabbe disease (KD) is a devastating pediatric lysosomal storage disorder affecting white matter of the brain. It is caused by mutations in the gene coding for the lysosomal enzyme galactocerebrosidase. While most patients present with symptoms within the first 6 months of life, others present later in life throughout adulthood. The early infantile form of KD (EIKD) is frequent in the Muslim Arab population in Israel, with a very high prevalence of approximately 1/100 to 1/150 live births. The homozygous variant c.1582G > A (p.D528N) was found to be responsible for EIKD in Palestinian Arab patients. KD was reported in different Arab countries with much lower frequency. While most Arab patients presented with EIKD, late infantile and late onset KD forms were also reported. Most Arab patients presented with variable symptoms ranging from EIKD to late onset KD, with variable clinical findings. Based on literature studies, this review focuses on the clinical and molecular findings of KD patients with Arab ancestry, and highlights the need for developing universal genetic screening programs to overcome the under-reported status of KD prevalence in Arabia. This is expected to improve the prognosis of the disease and promote targeted molecular diagnostics to the Arab patients.
Collapse
Affiliation(s)
- Hatem Zayed
- Department of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Chace DH, De Jesús VR, Spitzer AR. Clinical chemistry and dried blood spots: increasing laboratory utilization by improved understanding of quantitative challenges. Bioanalysis 2014; 6:2791-4. [PMID: 25486226 PMCID: PMC4528187 DOI: 10.4155/bio.14.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Donald H. Chace
- The Pediatrix Center for Research and Education, Pediatrix Medical Group, 1301 Concord Terrace, Sunrise, FL 33323
| | - Víctor R. De Jesús
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30341
| | - Alan R. Spitzer
- The Pediatrix Center for Research and Education, Pediatrix Medical Group, 1301 Concord Terrace, Sunrise, FL 33323
| |
Collapse
|
16
|
Hossain MA, Otomo T, Saito S, Ohno K, Sakuraba H, Hamada Y, Ozono K, Sakai N. Late-onset Krabbe disease is predominant in Japan and its mutant precursor protein undergoes more effective processing than the infantile-onset form. Gene 2014; 534:144-54. [DOI: 10.1016/j.gene.2013.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 11/15/2022]
|
17
|
Yang Y, Ren X, Xu Q, Wang C, Liu H, He X. Four novel GALC gene mutations in two Chinese patients with Krabbe disease. Gene 2013; 519:381-4. [PMID: 23462331 DOI: 10.1016/j.gene.2013.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/10/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Krabbe disease (OMIM #245200) is a rare autosomal recessive leukodystrophy caused by deficiency of galactocerebrosidase (GALC) activity. We identified four novel mutations of the GALC gene in two unrelated Chinese families with Krabbe disease: one insertion mutation, c.1836_1837insT, and one nonsense mutation, c.599C>A (p.S200X), in an infantile patient, and one deletion mutation, c.1911+1_1911+5delGTAAG, and one missense mutation, c.2041G>A, in an adult late-onset patient. This is the first identification of GALC mutations in the Chinese population.
Collapse
Affiliation(s)
- Yao Yang
- Department of Clinical Genetics, Bayi Children's Hospital Affiliated to General Hospital of Beijing Military Region, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Kardas F, Uzak AS, Hossain MA, Sakai N, Canpolat M, Yıkılmaz A. A novel homozygous GALC mutation: very early onset and rapidly progressive Krabbe disease. Gene 2012; 517:125-7. [PMID: 23276707 DOI: 10.1016/j.gene.2012.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/02/2012] [Accepted: 12/02/2012] [Indexed: 11/30/2022]
Abstract
A clear cut genotype-phenotype correlation for Krabbe disease is not available. Therefore, it is important to identify new mutations and their associated phenotypes to predict the prognosis of the disease. The aim of this study is to identify the causative mutation(s) in a family with Krabbe disease. After a clinical evaluation and suspicion of Krabbe disease galactocerebrosidase activity was analyzed and GALC gene mutation analysis was performed. The galactocerebrosidase enzyme activity was 0.01 nmol/mg/h protein (normal range 0.8-4). For further investigation mutation screening was performed by Sanger sequencing across the 17 exons of GALC gene. A novel homozygous mutation c.727delT (p.S243QfsX7) was found. In this study we present the clinical findings along with a novel GALC mutation in a consanguineous Turkish family. Although the relationship between the various genotypes and phenotypes in Krabbe disease has not been fully elucidated an accurate genetic family study is helpful for genetic counseling follow-up and therapy of Krabbe disease. Also, it is important to identify new mutations in order to clarify their clinical importance, to assess the prognosis of the disease, and to suggest either prenatal diagnosis or preimplantation genetic diagnosis to the effected families.
Collapse
Affiliation(s)
- Fatih Kardas
- Department of Pediatric Nutrition and Metabolism, Erciyes University School of Medicine, Kayseri 38039, Turkey
| | | | | | | | | | | |
Collapse
|
19
|
Jalal K, Carter R, Yan L, Barczykowski A, Duffner PK. Does galactocerebrosidase activity predict Krabbe phenotype? Pediatr Neurol 2012; 47:324-9. [PMID: 23044012 DOI: 10.1016/j.pediatrneurol.2012.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022]
Abstract
This study sought to determine whether galactocerebrosidase activity is predictive of Krabbe onset age, or of survival from onset when controlling for age at onset of signs. We analyzed data on 55 symptomatic patients from the Hunter James Kelly Research Institute's World-Wide Registry. They were tested for galactocerebrosidase activity at Jefferson Medical College (Philadelphia, PA), using survival models in a path model context. Higher galactocerebrosidase activity was predictive of later symptom onset times (P = 0.0011), but did not predict survival after symptom onset (P = 0.9064) when controlling for the logarithm of age at onset. No child with early infantile (aged 0-6 months) phenotype demonstrated galactocerebrosidase activity >0.1 nmol/hour/mg protein. Survival times within a given phenotype did not vary with galactocerebrosidase activity. Although low galactocerebrosidase activity does not predict phenotype, higher activity in the abnormal range (>0.1 nmol/hour/mg protein in this sample) was not identified in the early infantile variant. Galactocerebrosidase activity may be important to consider when predicting phenotype in the newborn screening population. Our findings provide empiric evidence that the upper end (0.15 nmol/hour/mg protein) of the high-risk galactocerebrosidase group in the New York State newborn screening program is conservatively appropriate.
Collapse
Affiliation(s)
- Kabir Jalal
- Department of Biostatistics, Population Health Observatory, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
20
|
Scruggs BA, Bowles AC, Zhang X, Semon JA, Kyzar EJ, Myers L, Kalueff AV, Bunnell BA. High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behav Brain Res 2012; 236:35-47. [PMID: 22951180 DOI: 10.1016/j.bbr.2012.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/11/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023]
Abstract
Globoid cell leukodystrophy (Krabbe's disease) is an autosomal recessive neurodegenerative disorder that results from the deficiency of galactosylceramidase, a lysosomal enzyme involved in active myelination. Due to the progressive, lethal nature of this disease and the limited treatment options available, multiple laboratories are currently exploring novel therapies using the mouse model of globoid cell leukodystrophy. In order to establish a protocol for motor function assessment of the twitcher mouse, this study tested the capability of an automated system to detect phenotypic differences across mouse genotypes and/or treatment groups. The sensitivity of this system as a screening tool for the assessment of therapeutic interventions was determined by the administration of murine bone marrow-derived stem cells into twitcher mice via intraperitoneal injection. Animal behavior was analyzed using the Noldus EthoVision XT7 software. Novel biomarkers, including abnormal locomotion (e.g., velocity, moving duration, distance traveled, turn angle) and observed behaviors (e.g., rearing activity, number of defecation boli), were established for the twitcher mouse. These parameters were monitored across all mouse groups, and the automated system detected improved locomotion in the treated twitcher mice based on the correction of angular velocity, turn angle, moving duration, and exploratory behavior, such as thigmotaxis. Further supporting these findings, the treated mice showed improved lifespan, gait, wire hang ability, twitching severity and frequency, and sciatic nerve histopathology. Taken together, these data demonstrate the utility of computer-based neurophenotyping for motor function assessment of twitcher mice and support its utility for detecting the efficacy of stem cell-based therapy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Brittni A Scruggs
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA; Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | - Annie C Bowles
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA
| | - Xiujuan Zhang
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Julie A Semon
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Evan J Kyzar
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | - Leann Myers
- Department of Biostatistics & Bioinformatics, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2001, New Orleans, LA 70112, USA
| | - Allan V Kalueff
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA; Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA.
| |
Collapse
|