1
|
Peña-Gomar I, Jiménez-Mariscal JL, Cerón M, Rosas-Trigueros J, Reyes-López CA. c.1898C>G/p.Ser633Trp Mutation in Alpha-L-Iduronidase: Clinical and Structural Implications. Protein J 2021; 40:68-77. [PMID: 33389473 DOI: 10.1007/s10930-020-09950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 11/27/2022]
Abstract
Mucopolysaccharidosis type I is a rare autosomal recessive genetic disease caused by deficient activity of α-L-iduronidase. As a consequence of low or absent activity of this enzyme, glycosaminoglycans accumulate in the lysosomal compartments of multiple cell types throughout the body. Mucopolysaccharidosis type I has been classified into 3 clinical subtypes, ranging from a severe Hurler form to the more attenuated Hurler-Scheie and Scheie phenotypes. Over 200 gene variants causing the various forms of mucopolysaccharidosis type I have been reported. DNA isolated from dried blood spot was used to sequencing of all exons of the IDUA gene from a patient with a clinical phenotype of severe mucopolysaccharidosis type I syndrome. Enzyme activity of α-L-iduronidase was quantified by fluorimetric assay. Additionally, a molecular dynamics simulation approach was used to determine the effect of the Ser633Trp mutation on the structure and dynamics of the α-L-iduronidase. The DNA sequencing analysis and enzymatic activity shows a c.1898C>G mutation associated a patient with a homozygous state and α-L-iduronidase activity of 0.24 μmol/L/h, respectively. The molecular dynamics simulation analysis shows that the p.Ser633Trp mutation on the α-L-iduronidase affect significant the temporal and spatial properties of the different structural loops, the N-glycan attached to Asn372 and amino acid residues around the catalytic site of this enzyme. Low enzymatic activity observed for p.Ser633Trp variant of the α-L-iduronidase seems to lead to severe mucopolysaccharidosis type I phenotype, possibly associated with a perturbation of the structural dynamics in regions of the enzyme close to the active site.
Collapse
Affiliation(s)
- Iliana Peña-Gomar
- Hospital Pediátrico Tacubaya, Secretaría de Salud, Ciudad de México, Mexico
| | | | - Magdalena Cerón
- Clínica de Enfermedades Lisosomales, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Jorge Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, ESCOM, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Cesar A Reyes-López
- Laboratorio de Bioquímica Estructural, Sección de Estudios de Posgrado E Investigación, ENMyH, SEPI-ENMyH, Instituto Politécnico Nacional., Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticomán, C.P. 07320, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Lysosomal storage disorders: Novel and frequent pathogenic variants in a large cohort of Indian patients of Pompe, Fabry, Gaucher and Hurler disease. Clin Biochem 2020; 89:14-37. [PMID: 33301762 DOI: 10.1016/j.clinbiochem.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Diagnosis of lysosomal storage disorders (LSDs) remains challenging due to wide clinical, biochemical and molecular heterogeneity. The study applies a combined biochemical and genetic approach to diagnose symptomatic Indian patients of Pompe, Fabry, Gaucher and Hurler disease to generate a comprehensive dataset of pathogenic variants for these disorders. DESIGN & METHODS Symptomatic patients were biochemically diagnosed by fluorometric methods and molecular confirmation was carried out by gene sequencing. Genetic variants were analyzed according to the ACMG/AMP 2015 variant interpretation guidelines. RESULTS Amongst the 2181 suspected patients, 285 (13%) were biochemically diagnosed. Of these, 22.5% (64/285) diagnosed with Pompe disease harboured c.1933G>A, c.1A>G, c.1927G>A and c.2783G>C as common and 10 novel pathogenic variants while 7.4% (21/285) patients diagnosed with Fabry disease carried c.851T>C, c.902G>A, c.905A>C and c.1212_1234del as frequent disease-causing variants along with 7 novel pathogenic variants. As many as 48.4% (138/285) patients were diagnosed with Gaucher disease and had c.1448T>C as the most common pathogenic variant followed by c.1342G>C and c.754T>C with 7 previously unreported disease-causing variants and in the 21.7% (62/285) diagnosed cases of Hurler disease, c.1469T>C, c.754delC c.568_581del and c.1898C>T were identified as the most common causative variants along with 21 novel pathogenic variants. CONCLUSION This comprehensive data set of disease-causing frequent and novel pathogenic variants reported for the first time in such a large patient cohort for each of these four LSDs from the Indian sub-continent, along with their biochemical and clinical spectrum will contribute towards providing definitive diagnosis and treatment, identifying carrier status, as well as in counselling prenatal cases to reduce the morbidity and mortality associated with these disorders.
Collapse
|
3
|
Faller KME, Ridyard AE, Gutierrez-Quintana R, Rupp A, Kun-Rodrigues C, Orme T, Tylee KL, Church HJ, Guerreiro R, Bras J. A deletion of IDUA exon 10 in a family of Golden Retriever dogs with an attenuated form of mucopolysaccharidosis type I. J Vet Intern Med 2020; 34:1813-1824. [PMID: 32785987 PMCID: PMC7517864 DOI: 10.1111/jvim.15868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background Mucopolysaccharidosis type I (MPS‐I) is a lysosomal storage disorder caused by a deficiency of the enzyme α‐l‐iduronidase, leading to accumulation of undegraded dermatan and heparan sulfates in the cells and secondary multiorgan dysfunction. In humans, depending upon the nature of the underlying mutation(s) in the IDUA gene, the condition presents with a spectrum of clinical severity. Objectives To characterize the clinical and biochemical phenotypes, and the genotype of a family of Golden Retriever dogs. Animals Two affected siblings and 11 related dogs. Methods Family study. Urine metabolic screening and leucocyte lysosomal enzyme activity assays were performed for biochemical characterization. Whole genome sequencing was used to identify the causal mutation. Results The clinical signs shown by the proband resemble the human attenuated form of the disease, with a dysmorphic appearance, musculoskeletal, ocular and cardiac defects, and survival to adulthood. Urinary metabolic studies identified high levels of dermatan sulfate, heparan sulfate, and heparin. Lysosomal enzyme activities demonstrated deficiency in α‐l‐iduronidase activity in leucocytes. Genome sequencing revealed a novel homozygous deletion of 287 bp resulting in full deletion of exon 10 of the IDUA gene (NC_006585.3(NM_001313883.1):c.1400‐76_1521+89del). Treatment with pentosan polyphosphate improved the clinical signs until euthanasia at 4.5 years. Conclusion and Clinical Importance Analysis of the genotype/phenotype correlation in this dog family suggests that dogs with MPS‐I could have a less severe phenotype than humans, even in the presence of severe mutations. Treatment with pentosan polyphosphate should be considered in dogs with MPS‐I.
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Alison E Ridyard
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Angie Rupp
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celia Kun-Rodrigues
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Tatiana Orme
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, United Kingdom
| | - Heather J Church
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, United Kingdom
| | - Rita Guerreiro
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL (UK DRI), London, United Kingdom.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at UCL (UK DRI), London, United Kingdom.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
4
|
Zahoor MY, Cheema HA, Ijaz S, Anjum MN, Ramzan K, Bhinder MA. Mapping of IDUA gene variants in Pakistani patients with mucopolysaccharidosis type 1. J Pediatr Endocrinol Metab 2019; 32:1221-1227. [PMID: 31473686 DOI: 10.1515/jpem-2019-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022]
Abstract
Background Mucopolysaccharidosis type 1 (MPS1) is a rare debilitating multisystem lysosomal disorder resulting due to the deficiency of α-L-iduronidase enzyme (IDUA), caused by recessive mutations in the IDUA gene. Lack or improper amount of the IDUA enzyme results in the improper metabolism of mucopolysaccharides or glycosaminoglycans (GAGs). These large sugar molecules accumulate in lysosomes within cells leading to different systemic complications. The estimated global incidence of MPS1 is 1:100,000 live births for the Hurler and 1:800,000 for the Scheie phenotypes. Methods Thirteen MPS1-affected children from 12 unrelated cohorts were enrolled. All coding and flanking regions of the IDUA gene were sequenced. Bioinformatics tools were used for data analysis and protein prediction for clinical correlations. Results Six IDUA gene mutations were mapped co-segregating with the recessive pattern of inheritance including a novel variant. A novel missense variant c.908T > C (p.L303P) was mapped in two affected siblings in a cohort in the homozygous form. The variant c.1469T > C (p.L490P) was mapped in five unrelated patients and c.784delC (p.H262Tfs*55) was mapped in three unrelated patients, while mutations c.1598C > G (p.P533R), c.314G > A (p.R105Q) and c.1277ins9 (p.[A394-L395-L396]) were mapped in a single patient each. Conclusions Multisystem disorders and a wide range of clinical presentation impede the evaluation of patients as well as make it difficult to differentiate between different phenotypes of MPS. Early and accurate diagnosis is crucial for the disease management and implementation of an expanded new-born genetic screening program for inborn errors of metabolism including MPS1. We recommend c.784delC (p.H262Tfs*55) and c.1469T > C (p.L490P) as first-line genetic markers for the molecular diagnosis of MPS1 in Pakistan.
Collapse
Affiliation(s)
- Muhammad Yasir Zahoor
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Huma Arshad Cheema
- Department of Pediatric Gastroenterology and Hepatology, The Children's Hospital and The Institute for Child Health, Lahore, Pakistan
| | - Sadaqat Ijaz
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Gastroenterology and Hepatology, The Children's Hospital and The Institute for Child Health, Lahore, Pakistan
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Zhou YA, Li P, Zhang Y, Xiong Q, Li C, Zhao Z, Wang Y, Xiao H. Identification of a novel compound heterozygous IDUA mutation underlies Mucopolysaccharidoses type I in a Chinese pedigree. Mol Genet Genomic Med 2019; 8:e1058. [PMID: 31758674 PMCID: PMC6978265 DOI: 10.1002/mgg3.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) is a rare autosomal storage disorder resulting from the defective alpha-L-iduronidase (encoded by IDUA) enzyme activity and accumulation of glycosaminoglycans (GAGs) in lysosomes. So far, more than 100 IDUA causative mutations have been identified leading to three MPS I phenotypic subtypes: Hurler syndrome (severe form), Hurler/Scheie syndrome (intermediate form), and Scheie syndrome (mild form). METHODS Whole-exome sequencing (WES) was performed to identify the underlying genetic mutations. To verify the identified variations, Sanger sequencing was performed for all available family members following PCR amplification. The impact on IDUA protein was analyzed by sequential analysis and homology modeling. RESULTS A novel IDUA heterozygous single base insertion (c.1815dupT, p.V606Cfs51* ) and a known missence mutation (c.T1037G, p.L346R) were detected in our patient diagnosed as congenital heart disease with heart valve abnormalities. The novel frameshift mutation results in a complete loss of 48 amino acids in the Ig-like domain and causes the formation of a putative protein product which might affect the IDUA enzyme activity. CONCLUSIONS A novel compound heterozygous IDUA mutation (c.1815dupT, p.V606Cfs51* ) was found in a Chinese MPS I family. The identification of the mutation facilitated accurate genetic counseling and precise medical intervention for MPS I in China.
Collapse
Affiliation(s)
- Yong-An Zhou
- Bluttransfusion The Second Hospital, Shanxi Medical University, Shanxi Taiyuan, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yanping Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Chao Li
- Bluttransfusion The Second Hospital, Shanxi Medical University, Shanxi Taiyuan, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yuxian Wang
- Department of Obstetrics and Gynecology, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Han Xiao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
A novel compound mutation in alpha-L-iduronidase gene causes mucopolysaccharidosis type I. J Genet 2019. [DOI: 10.1007/s12041-019-1113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
A longitudinal study of neurocognition and behavior in patients with Hurler-Scheie syndrome heterozygous for the L238Q mutation. Mol Genet Metab Rep 2019; 20:100484. [PMID: 31304092 PMCID: PMC6603334 DOI: 10.1016/j.ymgmr.2019.100484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Previous research has demonstrated the mutation, c.712T>A (p.L238Q) of the gene for α-L- iduronidase (IDUA) in patients with Hurler-Scheie syndrome is relatively severe when paired with a nonsense or deletion or splice-site mutation. This mutation was also found to be associated with psychiatric symptoms. This research presents longitudinal data and protein analysis to further investigate the severity and natural history of these unique patients. Methods Six patients heterozygous for L238Q were compared to six patients with Hurler-Scheie without the L238Q mutations. Somatic burden of disease, IQ, memory, attention, adaptive functioning and behavioral measures were given yearly over 2 to 4 years from 2009 to 2014. The impact of L238Q on the IDUA enzyme was examined using 7 bioinformatics tools and a 3D structural analysis. Results Similar to the cross sectional study, the L238Q patients had more severe abnormalities in IQ, attention, adaptive functioning, and behavioral functioning than the comparison group. There were no major differences between the two groups in change over time; IQ for both groups was stable with some behavioral areas showing improvement. Over time, both groups declined in visual spatial memory and, attention/visual processing. They also showed increased anxiety. Structural and bioinformatics analysis of the L238Q suggest that this mutation causes a significant reduction in the IDUA enzyme's potential catalytic activity, and this mutation may be more severe than other mutations contributing to the Hurler-Scheie syndrome phenotype, presumably causing the psychiatric disease. Conclusion L238Q patients demonstrate severe neurocognitive and neurobehavioral deficits but are relatively stable. Like the comparison group, decreasing visual spatial memory and attention and increasing anxiety suggest more intervention in life skills and emotional social supports are needed.
Collapse
|
8
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Worldwide distribution of common IDUA
pathogenic variants. Clin Genet 2018; 94:95-102. [DOI: 10.1111/cge.13224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- E. Poletto
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - G. Pasqualim
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - R. Giugliani
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Medical Genetics Service; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Department of Genetics; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- INAGEMP; National Institute of Population Medical Genetics; Porto Alegre Brazil
| | - U. Matte
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Department of Genetics; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - G. Baldo
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Department of Physiology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
10
|
Ngiwsara L, Ketudat-Cairns JR, Sawangareetrakul P, Charoenwattanasatien R, Champattanachai V, Kuptanon C, Pangkanon S, Tim-Aroon T, Wattanasirichaigoon D, Svasti J. p.X654R IDUA variant among Thai individuals with intermediate mucopolysaccharidosis type I and its residual activity as demonstrated in COS-7 cells. Ann Hum Genet 2017; 82:150-157. [PMID: 29282708 DOI: 10.1111/ahg.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) is a rare autosomal-recessive disorder caused by defects in alpha-L-iduronidase (IDUA), a lysosomal enzyme encoded by the IDUA gene. Herein, we characterized IDUA mutations underlying mucopolysaccharidosis type I intermediate form (Hurler-Scheie syndrome) and its molecular pathogenic mechanisms. METHODS Clinical data, activity of the IDUA enzyme in leukocytes, and a mutation of the IDUA gene were analyzed. Pathogenesis associated with an IDUA mutation was further investigated by evaluating the mutant cDNA sequence, protein expression and activity in COS-7 cells. RESULTS Five unrelated patients were identified to have clinical diagnosis of intermediate form of MPS I (Hurler-Scheie) and exhibited low-to-absent levels of leukocyte IDUA activity. Genetic analysis revealed homozygous c.*1T>C (p.X654R) mutation in two patients and compound heterozygosity between the c.*1T>C and another allele including c.265G>A (p.R89Q), c.935G>A (p.W312X), or c.1138 C>T (p.Q380X), each in a single patient. Sequencing the 3'RACE product of the c.*1T>C (p.X654R) allele indicated a 38-amino acids elongation of the mutant protein. COS-7 cells expressing IDUA with the mutations exhibited extremely low levels or complete absence of enzyme activity compared to wild-type IDUA. Western blot analysis detected no protein in p.W312X and p.Q380X samples, while an elevated molecular mass and a different pattern of protein bands were found in p.X654R specimen compared with the wild type IDUA. CONCLUSIONS Mutational spectrum underlying intermediate MPS I is expanded. Our data suggest that the p.X654R is an intermediate IDUA mutant allele with residual enzyme activity. It can lead to intermediate or milder form of MPS I depending on another associated allele.
Collapse
Affiliation(s)
- Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - James R Ketudat-Cairns
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.,School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | | | | | | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
11
|
Yassaee VR, Hashemi-Gorji F, Miryounesi M, Rezayi A, Ravesh Z, Yassaee F, Salehpour S. Clinical, biochemical and molecular features of Iranian families with mucopolysaccharidosis: A case series. Clin Chim Acta 2017; 474:88-95. [PMID: 28844463 DOI: 10.1016/j.cca.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
This study aims to ascertain the genetic variants which contribute to the most common types of MPS in eleven Iranian families. Clinical and biochemical features were obtained during initial examination and patients were further investigated for genetic defects in the MPS genes. Peripheral blood samples were obtained from all family members after obtaining written informed consent. Based on the patient's clinical diagnosis, three different genetic tests including Sanger sequencing of four genes (IDUA, IDS, SGSH, and GALNS), targeted panel (10 genes) and Whole Exome Sequencing (WES) techniques were applied to identify the causative variants. A total of 12 different mutations were identified in five genes, including nine novel mutations and three previously reported missense mutations. Sanger sequencing confirmation of the identified mutations determined one case of compound heterozygous in the NAGLU gene. In this study, novel mutations in MPS related genes were identified attempting to characterize the type and subtype of the disease using molecular approaches. Results of the study positively contribute to mutation spectrum of IDUA, IDS, SGSH, NAGLU, and GALNS genes in the Iranian cohort. It may also enrich genetic counseling for rapid risk assessment and disease management.
Collapse
Affiliation(s)
- Vahid Reza Yassaee
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Miryounesi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezayi
- Department of Pediatrics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ravesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhrolmolouk Yassaee
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadab Salehpour
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pediatrics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ghosh A, Mercer J, Mackinnon S, Yue WW, Church H, Beesley CE, Broomfield A, Jones SA, Tylee K. IDUA mutational profile and genotype-phenotype relationships in UK patients with Mucopolysaccharidosis Type I. Hum Mutat 2017; 38:1555-1568. [PMID: 28752568 DOI: 10.1002/humu.23301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis Type I (MPS I) is a lysosomal storage disorder with varying degrees of phenotypic severity caused by mutations in IDUA. Over 200 disease-causing variants in IDUA have been reported. We describe the profile of disease-causing variants in 291 individuals with MPS I for whom IDUA sequencing was performed, focusing on the UK subset of the cohort. A total of 63 variants were identified, of which 20 were novel, and the functional significance of the novel variants is explored. The severe form of MPS I is treated with hematopoietic stem cell transplantation, known to have improved outcomes with earlier age at treatment. Developing genotype-phenotype relationships would therefore have considerable clinical utility, especially in the light of the development of newborn screening programs for MPS I. Associations between genotype and phenotype are examined in this cohort, particularly in the context of the profile of variants identified in UK individuals. Relevant associations can be made for the majority of UK individuals based on the presence of nonsense or truncating variants as well as other associations described in this report.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean Mercer
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Sabrina Mackinnon
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, London, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, London, UK
| | - Heather Church
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Clare E Beesley
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alex Broomfield
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Karen Tylee
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
13
|
Kosuga M, Mashima R, Hirakiyama A, Fuji N, Kumagai T, Seo JH, Nikaido M, Saito S, Ohno K, Sakuraba H, Okuyama T. Molecular diagnosis of 65 families with mucopolysaccharidosis type II (Hunter syndrome) characterized by 16 novel mutations in the IDS gene: Genetic, pathological, and structural studies on iduronate-2-sulfatase. Mol Genet Metab 2016; 118:190-197. [PMID: 27246110 DOI: 10.1016/j.ymgme.2016.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Mucopolysaccharidosis type II (MPS II: also called as Hunter syndrome) is an X-linked recessive lysosomal storage disorder characterized by the accumulation of extracellular glycosaminoglycans due to the deficiency of the enzyme iduronate-2-sulfatase (IDS). Previous observations suggested that MPS II can be classified into two distinct disease subtypes: (1) severe type of MPS II involves a decline in the cognitive ability of a patient and (2) attenuated type of MPS II exhibits no such intellectual phenotype. To determine whether such disease subtypes of MPS II could be explained by genetic diagnosis, we analyzed mutations in the IDS gene of 65 patients suffering from MPS II among the Japanese population who were diagnosed with both the accumulation of urinary glycosaminoglycans and a decrease in their IDS enzyme activity between 2004 and 2014. Among the specimens examined, we identified the following mutations: 33 missense, 8 nonsense, 7 frameshift, 4 intronic changes affecting splicing, 8 recombinations involving IDS-IDS2, and 7 other mutations including 4 large deletions. Consistent with the previous data, the results of our study showed that most of the attenuated phenotype was derived from the missense mutations of the IDS gene, whereas mutations associated with a large structural alteration including recombination, splicing, frameshift, and nonsense mutations were linked to the severe phenotype of MPS II. Furthermore, we conducted a homology modeling study of IDS P120R and N534I mutant as representatives of the causative mutation of the severe and attenuated type of MPS II, respectively. We found that the substitution of P120R of the IDS enzyme was predicted to deform the α-helix generated by I119-F123, leading to the major structural alteration of the wild-type IDS enzyme. In sharp contrast, the effect of the structural alteration of N534I was marginal; thus, this mutation was pathogenically predicted to be associated with the attenuated type of MPS II. These results suggest that a combination of the genomic diagnosis of the IDS gene and the structural prediction of the IDS enzyme could enable the prediction of a phenotype more effectively.
Collapse
Affiliation(s)
- Motomichi Kosuga
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Asami Hirakiyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Naoko Fuji
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tadayuki Kumagai
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Joo-Hyun Seo
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mari Nikaido
- Biobank, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2 Nishinopporo, Ebetsu, Hokkaido 069-8585, Japan
| | - Kazuki Ohno
- Catalyst Inc., 1-5-6 Kudan-minami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Torayuki Okuyama
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
14
|
Ahmed A, Whitley CB, Cooksley R, Rudser K, Cagle S, Ali N, Delaney K, Yund B, Shapiro E. Neurocognitive and neuropsychiatric phenotypes associated with the mutation L238Q of the α-L-iduronidase gene in Hurler-Scheie syndrome. Mol Genet Metab 2014; 111:123-7. [PMID: 24368159 PMCID: PMC3939822 DOI: 10.1016/j.ymgme.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED The lysosomal enzyme α-L-iduronidase hydrolyzes terminal iduronic acid from heparan sulfate and dermatan sulfate, and is an essential step in GAG degradation. Mutations of its gene, IDUA, yield a spectrum of mucopolysaccharidosis (MPS) type I clinical disorders. The IDUA mutation, c.712T>A (p.L238Q) was previously noted as a mild mutation. In a longitudinal study of MPS brain structure and function (Lysosomal Disease Network), we found this mutation in 6 of 14 Hurler-Scheie syndrome patients in the age range of 15 to 25 years. We hypothesized that L238Q, when paired with a nonsense mutation, is significantly more severe than other missense-nonsense combinations. METHODS Of 6 patients with a L238Q mutation, the L238Q allele was paired with a nonsense mutation in 4 patients, paired with a deletion in 1, and with a splice site mutation in another. This group was compared to 6 Hurler-Scheie patients closely matched in age and mutation type. IQ and other neuropsychological tests were administered as part of the protocol. Medical history was compiled into a Physical Symptom Score (PSS). Assessment of IQ, attention, memory, spatial ability, adaptive function and psychological status were measured. RESULTS No group differences were found in mean age at evaluation (17.8 and 19.0 years), duration of ERT, or PSS. By history, all were reported to be average in IQ (4/6 with documentation) in early childhood. All (100%) of the L238Q group had a psychiatric history and sleep problems compared to none (0%) of the comparison group. Significant differences were found in depression and withdrawal on parent report measures. IQ was lower in the L238Q group (mean IQ 74) than the comparison group (mean IQ 95; p<0.016). Attention, memory, and visual-spatial ability scores were also significantly lower. Three occurrences of shunted hydrocephalus, and 4 of cervical cord compression were found in the L238Q group; the comparison group had one occurrence of unshunted hydrocephalus and two of cord compression. DISCUSSION The missense mutation L238Q, when paired with a nonsense mutation, is associated with significant, late-onset brain disease: psychiatric disorder, cognitive deficit, and general decline starting at a later age than in Hurler syndrome with a mutation-related rate of GAG accumulation and its pathologic sequelae. This particular genotype-phenotype may provide insight into the genesis of psychiatric illnesses more broadly. Consideration of methods for early, brain-targeted treatment in these patients might be considered.
Collapse
Affiliation(s)
- Alia Ahmed
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chester B Whitley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Renee Cooksley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyle Rudser
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie Cagle
- Department of Human Genetics, Emory University, Decatur, GA 30033, USA
| | - Nadia Ali
- Department of Human Genetics, Emory University, Decatur, GA 30033, USA
| | - Kathleen Delaney
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brianna Yund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elsa Shapiro
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|