1
|
Alayoubi AM, Ijaz A, Wali A, Hashmi JA, Alharbi A, Basit S. Zellweger syndrome; identification of mutations in PEX19 and PEX26 gene in Saudi families. Ann Med 2025; 57:2447400. [PMID: 39757991 PMCID: PMC11705544 DOI: 10.1080/07853890.2024.2447400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Peroxisome biogenesis disorders (PBD) affect multiple organ systems. It is characterized by neurological dysfunction, hypotonia, ocular anomalies, craniofacial abnormalities, and absence of peroxisomes in fibroblasts. PBDs are associated with mutations in any of fourteen different PEX genes, which are involved in peroxisome biogenesis. Zellweger spectrum disorder (ZSD) is a severe form of PBD. More than 90% of the ZSD cases have mutations in PEX1, PEX6, PEX10, PEX12, and PEX26. Mutations in the PEX19 gene are rarely associated with PBD/ZSD; however, a large proportion of PEX26 mutations are associated with ZSD. METHODS We recruited two Saudi families with multiple affected individuals with dysmorphic features, including hypertelorism, large open fontanelles, generalized hypotonia, and epicanthal folds with poor reflexes since birth. Whole exome sequencing (WES) and Sanger sequencing was performed to identify the genetic cause. The frequency and pathogenicity of the identified mutations were assessed using various online bioinformatics tools. RESULTS WES identified a novel nonsense variant (c.367C > T) in the PEX19 gene in family A patients. This nonsense mutation was predicted to cause premature termination (p.Gln123*). A previously reported synonymous variant (c.228C > T; p.Gly76Gly) in PEX26 was found in a patient from family B. Both variants were segregating in an autosomal recessive manner in the respective families. CONCLUSION The present study has added a novel nonsense mutation to the mutation spectrum of PEX19, which is the second null mutation identified to date. Moreover, in this study, the importance of a synonymous exonic variant of PEX26 close to the splice donor site was explored in relation to pre-mRNA splicing and resulting disease manifestations.
Collapse
Affiliation(s)
- Abdulfatah M. Alayoubi
- Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia
| | - Ambreen Ijaz
- Department of Zoology, Sardar Bahadur Khan Women’s University Quetta, Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Jamil A. Hashmi
- Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia
| | - Azizah Alharbi
- Department of Pediatrics, Medina Maternity and Children Hospital, King Salman bin Abdul Aziz Medical City, Medina, Saudi Arabia
| | - Sulman Basit
- Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia
| |
Collapse
|
2
|
Eun SY, Cheon YH, Lee CH, Chung CH, Lee MS, Kim JY. PEX5 acts as a negative regulator of RANKL-induced osteoclastogenesis in vitro and inflammatory calvarial bone destruction in vivo. Biochem Biophys Res Commun 2025; 767:151924. [PMID: 40319819 DOI: 10.1016/j.bbrc.2025.151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Peroxisomal biogenesis factor 5 (PEX5), a peroxisomal import receptor, is well recognized for its role in protein trafficking and oxidative stress regulation. However, its function in bone metabolism remains unclear. Given the established impact of oxidative stress on osteoclast differentiation, this study explores the previously uncharacterized role of PEX5 in osteoclastogenesis and bone resorption. Using bone marrow-derived macrophages, we examined the effects of PEX5 knockdown (siPEX5) and recombinant PEX5 protein (rpPEX5) on osteoclast differentiation. Osteoclast activity was evaluated through TRAP staining, F-actin ring formation, and bone resorption assays. qRT-PCR and Western blot analyses assessed gene and protein expression, while an lipopolysaccharide (LPS)-induced calvarial bone loss model provided in vivo validation. PEX5 expression declined during osteoclast differentiation, and its suppression promoted osteoclastogenesis by increasing c-Fos, NFATc1, and osteoclast-specific gene expression. Loss of PEX5 also enhanced receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced activation of Akt, MAPK, IκB, and calcium-dependent pathways, accelerating osteoclast maturation. In contrast, rpPEX5 treatment effectively inhibited osteoclast differentiation and bone resorption by downregulating NFATc1 and dampening RANKL-mediated signaling. In vivo, rpPEX5 administration mitigated LPS-induced bone loss by preserving bone structure and reducing osteoclast activity. These findings reveal a novel function of PEX5 as a regulator of osteoclast differentiation, independent of its peroxisomal role. The extracellular activity of PEX5 suggests a broader regulatory mechanism in bone metabolism, with potential therapeutic implications for osteolytic diseases.
Collapse
Affiliation(s)
- So Young Eun
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea; Department of Pharmacology, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, 54538, Republic of Korea
| | - Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Chong Hyuk Chung
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea.
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
3
|
Cheung ACT, Di Pietro E, Argyriou C, Bareke E, D'Souza Y, Puri RD, Muhammed Shabeer P, Ganetzky R, Goldstein A, Vanderver A, Mohan S, Majewski J, Yergeau C, Braverman N. Using multiple modalities to confirm diagnosis in patients with suspected peroxisome biogenesis disorders. Mol Genet Metab 2025; 145:109080. [PMID: 40112482 DOI: 10.1016/j.ymgme.2025.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Zellweger spectrum disorder (ZSD) results from biallelic variants in any one of 13 PEX genes involved in peroxisome biogenesis and function. The majority of ZSD cases result from pathogenic variants in PEX1. Here, we present 3 patients with suspected PEX1-related ZSD and non-diagnostic whole exome sequencing and describe the use of multiple modalities to ascertain their diagnosis. We confirmed peroxisomal dysfunction in the patients by demonstrating abnormal peroxisome metabolite levels in blood and peroxisome import dysfunction in patient fibroblasts. RNA studies including RNA-seq and RT-PCR, followed by Sanger sequencing showed leaky splice variants including an intron 13 variant causing exon 14 skipping (Patient 1), an intron 22 variant causing intron 22 retention (Patient 2), and a synonymous splice-site variant causing exon 16 skipping (Patient 3). All three patients had very low amounts of canonical PEX1 transcripts on RNA-seq, as well as residual but reduced PEX1 protein levels on immunoblotting, which likely explains their non-severe ZSD phenotype. This study suggests that a multi-modality approach combining biochemical testing, functional assays in fibroblasts and molecular investigations including sequencing of non-coding regions and RNA analysis may aid in diagnosis of patients with suspected PBD-ZSD and inconclusive WES.
Collapse
Affiliation(s)
- Anthony C T Cheung
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Erminia Di Pietro
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Catherine Argyriou
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yasmin D'Souza
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, Delhi, India
| | - P Muhammed Shabeer
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, Delhi, India
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shruthi Mohan
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Christine Yergeau
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Nancy Braverman
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Center, Montreal, Quebec, Canada; Departments of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Matsushita M, Muri J, Berest I, Li F, Liu H, Corak B, Zamboni N, Buescher J, Othman A, Corrado M, Cupovic J, Werner S, Kovacs W, Kopf M. Peroxisomes are critical for a unique metabolic demand and survival of alveolar macrophages. Cell Rep 2025; 44:115623. [PMID: 40287943 DOI: 10.1016/j.celrep.2025.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Tissue-resident macrophages (TRMs) populate throughout various tissues, and their homeostatic metabolism is heavily influenced by these microenvironments. Peroxisomes are organelles that contribute to lipid metabolism. However, the involvement of these organelles in the bioenergetics of TRMs remains undetermined. We conducted a developmental screen of TRMs using a conditional peroxisomal biogenesis factor 5 (Pex5) knockout mouse model that lacks functional peroxisomes in all immune cell subsets. Pulmonary alveolar macrophages (AMs) appeared as the only subset of TRMs that required functional peroxisomes for their development. Pex5 deficiency resulted in reduced AM survival due to increased sensitivity to lipotoxicity, in line with an excess accumulation of ceramides. The absence of peroxisomes had a significant effect on overall mitochondrial fitness and altered their metabolic program, allowing them to engage in glycolysis in addition to oxidative phosphorylation. Our results revealed that AMs have a unique metabolic regulation, where peroxisomes play a central role in their homeostatic development and maintenance.
Collapse
Affiliation(s)
- Mai Matsushita
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Muri
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivan Berest
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Fengqi Li
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Huan Liu
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Basak Corak
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Joerg Buescher
- Metabolomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Alaa Othman
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne and Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jovana Cupovic
- Department of Developmental Immunology, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner Kovacs
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Wehbe M, Zalzal RN, El-Khoury R, Charafeddine L, Karam PE. Mitochondria and Peroxisome Crosstalk in Peroxisome Biogenesis Disorder 8A Caused by a Rare Variant in PEX16 Gene. Clin Genet 2025. [PMID: 40271797 DOI: 10.1111/cge.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Peroxisome biogenesis disorder 8A is a rare autosomal recessive disorder caused by mutations in the PEX16 gene. We report the clinical, biochemical, and molecular features of a patient harboring the homozygous NM_004813.4: c.526C>T, p.(Arg176*) mutation in PEX16 associated with mitochondrial dysfunction. This newborn presented with microcephaly, encephalopathy, hypotonia, failure to thrive, hepatomegaly, and abnormal retinal pigmentation. He had elevated plasma very long-chain fatty acids. Skeletal muscle biopsy revealed significant mitochondrial depletion with deficiencies of the respiratory chain Complexes I-IV, with significant reductions in cytochrome c oxidase and citrate synthase activity. The peroxisome biogenesis disorder 8A was confirmed by whole genome sequencing. This is the first case delineating the association of mitochondrial dysfunction with peroxisome biogenesis disorder 8A caused by the above mutation. Further studies are needed to elucidate the underlying pathophysiological mechanisms of mitochondria and peroxisome crosstalk.
Collapse
Affiliation(s)
- Mohamad Wehbe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rudy N Zalzal
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lama Charafeddine
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E Karam
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
6
|
Khalilian S, Fathi M, Jamshidi S, Madannejad R, Sayad A, Ghafouri-Fard S, Miryounesi M. Spectrum of genetic alterations in patients with peroxisome biogenesis defects in the Iranian population: a case series study. BMC Med Genomics 2025; 18:67. [PMID: 40205409 PMCID: PMC11984031 DOI: 10.1186/s12920-025-02126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Peroxisomal disorders are a group of hereditary metabolic disorders that happen when peroxisomes are defective. Around 80% of individuals affected by peroxisomal disorders are classified within the spectrum of Zellweger syndromes with autosomal recessive inheritance pattern that results from mutations in one of the 13 PEX genes. Clinical exome sequencing plays a vital role in the diagnosis where the symptoms are atypical. In the current study, we used this technique to find the underlying genetic cause in 14 Iranian patients with peroxisomal disorders. PEX1 variants were detected in five patients. PEX2, PEX5, PEX6 and PEX7 variants were detected in three, one, one, and two cases, respectively. Finally, ACOX1 variants were identified in two cases. All cases except two cases were homozygote for the suspected variants in Zellweger syndrome-related genes. Two cases were compound heterozygote for variants in the PEX1 gene. In total, two novel variants were identified, including c.313 C > T (p.Gln105*) and c.961 A > T (p.Ile321Phe) in the PEX1 and ACOX1 genes, respectively. The present research expands the range of genetic variations observed in Iranian individuals diagnosed with various forms of Zellweger spectrum disorders.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Madannejad
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Miryounesi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Omri S, Argyriou C, Pryce RS, Di Pietro E, Chaurand P, Braverman N. Spatial characterization of RPE structure and lipids in the PEX1-p.Gly844Asp mouse model for Zellweger spectrum disorder. J Lipid Res 2025; 66:100771. [PMID: 40058592 PMCID: PMC11999432 DOI: 10.1016/j.jlr.2025.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Zellweger Spectrum Disorder (ZSD) is caused by defects in PEX genes, whose proteins are required for peroxisome assembly and function. Peroxisome dysfunction in ZSD causes multisystem effects, with progressive retinal degeneration (RD) among the most frequent clinical findings. However, much remains unknown about how peroxisome deficiency causes RD. To study RD pathophysiology in ZSD, we used the PEX1-p.Gly844Asp (G844D) mouse model, which represents the common human PEX1-p.Gly843Asp (G843D) variant. We previously reported diminished retinal function, diminished functional vision, and neural retina structural defects in this model. Here, we investigate the retinal pigment epithelium (RPE) phenotype, examining morphological, inflammatory, and lipid changes at 1, 3, and 6 months of age. We report that RPE cells exhibit evident degeneration by 3 months that worsens with time, starts in the dorsal pole, and is accompanied by subretinal inflammatory cell infiltration. We match these events with imaging mass spectrometry for regional analysis of lipids in the RPE. We identified 47 lipid alterations preceding structural changes, 9 of which localize to the dorsal pole. 29 of these persist to 3 months, with remodeling of the dorsal pole lipid signature. 13 new alterations occur concurrent with histological changes. Abnormalities in peroxisome-dependent lipids detected by LC/MS/MS are exacerbated over time. This study represents the first characterization of RPE in a ZSD model, and the first in situ lipid analysis in peroxisome-deficient tissue. Our findings uncover potential lipid drivers of RD progression in ZSD, and identify candidate biomarkers for retinopathy progression and response to therapy.
Collapse
Affiliation(s)
- Samy Omri
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Catherine Argyriou
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Rachel S Pryce
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Erminia Di Pietro
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Nancy Braverman
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Gonzalez C, Cohen MJ, Hong J, Calame D, Marri K, Harpavat S, Wangler MF, Mysore K. Subacute Neuropathy Post-Liver Transplantation in Zellweger Spectrum Disorder: A Case Report. Am J Med Genet A 2025; 197:e63941. [PMID: 39632697 PMCID: PMC11885015 DOI: 10.1002/ajmg.a.63941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Peroxisome biogenesis disorders-Zellweger spectrum disorder (PBD-ZSD) is a rare genetic disease caused by mutations in the genes involved in peroxisome biogenesis. PBD-ZSD presentations vary in severity, and treatment of PBD-ZSD remains supportive focused on specific complications. A few reported cases of the use of liver transplantation to treat either neurological symptoms or liver dysfunction and cirrhosis in PBD-ZSD have been published. In this case report, we document the course of a 16-year-old boy diagnosed with PBD-ZSD and a delayed and unexpected neuropathy that developed after undergoing orthotopic liver transplantation (OLT) for which the indication was liver cirrhosis. Following OLT, the patient's gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alanine transaminase (ALT), and albumin normalized; however, he developed a polyneuropathy, the cause of which was investigated with conditions such as inflammatory neuropathies (Guillain Barré syndrome: GBS/chronic inflammatory demyelinating polyneuropathy: CIDP), drug effect, or underlying complication of PBD-ZSD all considered possible. His neuropathic symptoms improved and therefore this case represents an exploration of an apparent delayed and resolving subacute neuropathy in PBD-ZSD after OLT.
Collapse
Affiliation(s)
| | - Madelyn J. Cohen
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Juhee Hong
- Department Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Calame
- Pediatric Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Kavitha Marri
- Pediatric Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Sanjiv Harpavat
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Michael F. Wangler
- Department Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Krupa Mysore
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Sheedy CJ, Chowdhury SP, Ali BA, Miyamoto J, Pang EZ, Bacal J, Tavasoli KU, Richardson CD, Gardner BM. PEX1 G843D remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome. J Biol Chem 2025; 301:108467. [PMID: 40158855 DOI: 10.1016/j.jbc.2025.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in HsPEX1 and HsPEX6 disrupt peroxisomal matrix protein import and are the leading cause of peroxisome biogenesis disorders. The most common disease-causing mutation in PEX1 is the HsPEX1G843D allele, which results in a reduction of peroxisomal protein import. Here, we demonstrate that the homologous yeast mutant, ScPex1G700D, reduces the stability of Pex1's active D2 ATPase domain and impairs assembly with Pex6 in vitro, but can still form an active AAA-ATPase motor. In vivo, ScPex1G700D exhibits only a slight defect in peroxisome import. We generated model human HsPEX1G843D cell lines and show that PEX1G843D is rapidly degraded by the proteasome, but that induced overexpression of PEX1G843D can restore peroxisome import. Additionally, we found that the G843D mutation reduces PEX1's affinity for PEX6, and that impaired assembly is sufficient to induce degradation of PEX1WT. Lastly, we found that fusing a deubiquitinase to PEX1G843D significantly hinders its degradation in mammalian cells. Altogether, our findings suggest a novel regulatory mechanism for PEX1/PEX6 hexamer assembly and highlight the potential of protein stabilization as a therapeutic strategy for peroxisome biogenesis disorders arising from the G843D mutation and other PEX1 hypomorphs.
Collapse
Affiliation(s)
- Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Bashir A Ali
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julia Miyamoto
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Eric Z Pang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
10
|
Bose M, von Thun NL, Kerrihard AL, Lopez ML, Donlon CI, Smolen AK, Fontes NP. Comparison of Caregiver-Reported Dietary Intake Methods in Zellweger Spectrum Disorder. Nutrients 2025; 17:989. [PMID: 40290032 PMCID: PMC11944273 DOI: 10.3390/nu17060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Zellweger spectrum disorder (ZSD), a rare genetic disease characterized by defects in peroxisome biogenesis, results in dysfunction of all organ systems, including feeding difficulties, gastrointestinal bleeding, and reduced overall growth. Despite this nutritional impact, no published studies have assessed dietary intake in ZSD. The purpose of this study was to determine nutrient intake in individuals with ZSD or a related peroxisomal disorder using two methods of dietary assessment as provided by family caregivers. Methods: Family caregivers participated in multiple 24 h dietary recall interviews and completed 3-day food records for their child with ZSD or a related single-enzyme peroxisomal disorder over a 6-month period. Results: Twenty-one subjects (eleven orally fed and ten enterally fed), ranging from 1 to 33 years of age, were included in the study. Energy and nutrient intake as reported by dietary recall vs. 3-day food record were highly correlated for all nutrients (r2 = 0.998, p < 0.0001). Mean nutrient intakes for subjects generally achieved or exceeded DRI requirements, except for fiber (about 50% of DRI). Conclusions: These results show that dietary assessment is feasible in individuals with ZSD using caregiver input, regardless of feed modality, and that dietary intake is consistent across different methods of assessment. These findings may be applicable in dietary assessments for individuals with ZSD and similar genetic disorders and a methodological consideration in clinical interventions.
Collapse
Affiliation(s)
- Mousumi Bose
- Department of Nutrition and Food Studies, College for Community Health, Montclair State University, Montclair, NJ 07043, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Shukla N, Neal ML, Farré JC, Mast FD, Truong L, Simon T, Miller LR, Aitchison JD, Subramani S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630809. [PMID: 40093121 PMCID: PMC11908190 DOI: 10.1101/2024.12.31.630809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peroxisomes are versatile organelles mediating energy homeostasis and redox balance. While peroxisome dysfunction is linked to numerous diseases, the molecular mechanisms and signaling pathways regulating peroxisomes during cellular stress remain elusive. Using yeast, we show that perturbations disrupting protein homeostasis including loss of ER or cytosolic chaperone function, impairments in ER protein translocation, blocking ER N-glycosylation, or reductive stress, cause peroxisome proliferation. This proliferation is driven by increased de novo biogenesis from the ER as well as increased fission of pre-existing peroxisomes, rather than impaired pexophagy. Notably, peroxisome biogenesis is essential for cellular recovery from proteotoxic stress. Through comprehensive testing of major signaling pathways, we determine this response to be mediated by activation of the heat shock response and inhibition of Target of Rapamycin (TOR) signaling. Finally, the effects of proteotoxic stress and TOR inhibition on peroxisomes are also captured in human fibroblasts. Overall, our findings reveal a critical and conserved role of peroxisomes in cellular response to proteotoxic stress.
Collapse
Affiliation(s)
- Nandini Shukla
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Claude Farré
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Linh Truong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Theresa Simon
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leslie R Miller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suresh Subramani
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Cheng AY, Simmonds AJ. Peroxisome inter-organelle cooperation in Drosophila. Genome 2025; 68:1-12. [PMID: 39471439 DOI: 10.1139/gen-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Many cellular functions are compartmentalized within the optimized environments of organelles. However, processing or storage of metabolites from the same pathway can occur in multiple organelles. Thus, spatially separated organelles need to cooperate functionally. Coordination between organelles in different specialized cells is also needed, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Peroxisomes coordinate with other organelles including mitochondria, endoplasmic reticulum, lysosomes, and lipid droplets. This functional coordination requires, or is at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.
Collapse
Affiliation(s)
- Andy Y Cheng
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
Koç Yekedüz M, Yağci GN, Sürücü Kara İ, Evgin M, Kose E, Eminoğlu FT. Challenges Faced by Newborns with Inherited Metabolic Disorders and Their Mothers During Antepartum, Intrapartum, and Postpartum Periods. Fetal Pediatr Pathol 2025; 44:53-62. [PMID: 39760466 DOI: 10.1080/15513815.2024.2447082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Inherited metabolic disorders (IMDs) pose various obstetric challenges. In this study investigates the prenatal and perinatal profiles of pregnancies affected by IMDs and examines their obstetric outcomes. The most frequently observed antepartum issues identified among 996 patients with IMDs were intrauterine growth restriction (IUGR), intrauterine microcephaly and oligohydramnios. It was notable that mitochondrial disorders are associated with increased incidence of oligohydramnios (p = 0.010), IUGR (p < 0.001), microcephaly (p < 0.001) and intrauterine cardiac issues (p = 0.002). Furthermore, the incidence of intrauterine and natal facial malformations was significantly elevated in the patient groups with mitochondrial (p < 0.001) and lysosomal/peroxisomal diseases (p = 0.037) when compared to the other IMD groups. The mothers of newborns with mitochondrial diseases developed significantly more complications during previous pregnancies than those with other diagnoses (p = 0.040). Identifying risk factors and complications early on can greatly improve outcomes for both mother and infant by facilitating timely intervention and treatment.
Collapse
Affiliation(s)
- Merve Koç Yekedüz
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gözde Nur Yağci
- Rare Diseases Application and Research Center, Ankara University, Ankara, Türkiye
| | - İlknur Sürücü Kara
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Merve Evgin
- Rare Diseases Application and Research Center, Ankara University, Ankara, Türkiye
| | - Engin Kose
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
14
|
Tokatly Latzer I, Pearl PL. Inherited metabolic epilepsies-established diseases, new approaches. Epilepsia Open 2024. [PMID: 39729084 DOI: 10.1002/epi4.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Inherited metabolic epilepsies (IMEs) represent the inherited metabolic disorders (IMDs) in which epilepsy is a prevailing component, often determining other neurodevelopmental outcomes associated with the disorder. The different metabolic pathways affected by individual IMEs are the basis of their rarity and heterogeneity. These characteristics make it particularly challenging to establish their targeted therapies, and many of the IMEs are treated nowadays only symptomatically and supportively. However, owing to immense molecular and genetic progress in the last decades, important features of their pathomechanisms have been elucidated. This has led to advancements in the development of novel diagnostic approaches and specific therapies for a considerable number of these unique disorders. This review provides an overview of the broad approach to the diagnosis and management of IMEs, along with their eminent and new individual treatment options, ranging from dietary therapies and vitamins to enzyme and gene replacement therapies. PLAIN LANGUAGE SUMMARY: Inherited metabolic disorders (IMDs) in which epilepsy is a main symptom are considered inherited metabolic epilepsies (IMEs). It is challenging to develop targeted therapies for IMEs since they are rare and individually different in characteristics. Therefore, many of the IMEs are currently treated only symptomatically. However, scientific progress in the last decades led to the creation of specific treatments for many of these unique disorders. This review provides an overview of the approach to the diagnosis and management of IMEs, including the available newer therapeutic modalities.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Sheedy CJ, Chowdhury SP, Ali BA, Miyamoto J, Pang EZ, Bacal J, Tavasoli KU, Richardson CD, Gardner BM. PEX1 G843D remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627778. [PMID: 39713301 PMCID: PMC11661142 DOI: 10.1101/2024.12.10.627778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in HsPEX1 and HsPEX6 disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the HsPEX1G843D allele, which results in a reduction of peroxisomal protein import. Here we demonstrate that in vitro the homologous yeast mutant, ScPex1G700D, reduces the stability of Pex1's active D2 ATPase domain and impairs assembly with Pex6, but can still form an active AAA-ATPase motor. In vivo, ScPex1G700D exhibits only a slight defect in peroxisome import. We generated model human HsPEX1G843D cell lines and show that PEX1G843D is rapidly degraded by the proteasome, but that induced overexpression of PEX1G843D can restore peroxisome import. Additionally, we found that the G843D mutation reduces PEX1's affinity for PEX6, and that impaired assembly is sufficient to induce degradation of PEX1WT. Lastly, we found that fusing a deubiquitinase to PEX1G843D significantly hinders its degradation in mammalian cells. Altogether, our findings suggest a novel regulatory mechanism for PEX1/PEX6 hexamer assembly and highlight the potential of protein stabilization as a therapeutic strategy for PBDs arising from the G843D mutation and other PEX1 hypomorphs.
Collapse
Affiliation(s)
- Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Bashir A Ali
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julia Miyamoto
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Eric Z Pang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
17
|
Zhang W, Narvaez Rivas M, Setchell KD. Tandem mass spectrometry of serum cholestanoic (C 27) acids - Typical concentration ranges and application to the study of peroxisomal biogenesis disorders. J Mass Spectrom Adv Clin Lab 2024; 34:34-43. [PMID: 39584149 PMCID: PMC11584599 DOI: 10.1016/j.jmsacl.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Background Primary bile acid synthesis is impaired in peroxisomal disorders, leading to the accumulation of long-chain bile acids, specifically dihydroxycholestanoic and trihydroxycholestanoic acids. Quantification of the diastereoisomers of these C27 bile acids is essential for the differential diagnosis of these disorders. Methods High-performance liquid chromatography electrospray ionization-tandem mass spectrometry with stable-isotope dilution was used to quantify all eight diastereoisomers of cholestanoic acids in serum. Clinical ranges were established for patients with and without cholestatic liver disease, as well as for those with peroxisomal disorders. Results The assay was linear over the range of 20-2,500 ng/mL, and intra- and inter-assay imprecision was <20 % CV. The mean (±SEM) serum concentration of total C27 bile acids in 20 adult controls was low (0.007 ± 0.004 μmol/L). In non-cholestatic, moderately cholestatic, and severely cholestatic patients, total C27 bile acids measured 0.015 ± 0.011, 0.129 ± 0.034, and 0.986 ± 0.249 μmol/L, respectively. In contrast, patients with confirmed peroxisomal disorders (n = 49) exhibited concentrations >10-fold higher (14.06 ± 2.59 μmol/L). Patients with heterozygous mutations in PEX genes had low concentrations of serum C27 bile acids. In all groups, the (25S)- and (25R)-diastereomers were present in a ratio of 0.3. In cases of 2-methylacyl-CoA racemase deficiency, serum total C27 bile acids were markedly elevated (10.61 ± 0.92 μmol/L) and comprised exclusively the (25R)-diastereoisomer. Conclusions This tandem mass spectrometric assay quantifies all diastereoisomers of the C27 cholestanoic acids in serum and was used to establish typical clinical concentration ranges. The method is applicable to the diagnosis of peroxisomal disorders and differentiates 2-methylacyl-CoA racemase deficiency from other peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Monica Narvaez Rivas
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
18
|
Vu JT, Tavasoli KU, Sheedy CJ, Chowdhury SP, Mandjikian L, Bacal J, Morrissey MA, Richardson CD, Gardner BM. A genome-wide screen links peroxisome regulation with Wnt signaling through RNF146 and TNKS/2. J Cell Biol 2024; 223:e202312069. [PMID: 38967608 PMCID: PMC11223164 DOI: 10.1083/jcb.202312069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerases TNKS and TNKS2, which bind the peroxisomal membrane protein PEX14. We propose that RNF146 and TNKS/2 regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased TNKS/2 and RNF146-dependent degradation of non-peroxisomal substrates, including the β-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of β-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation but also a novel role in bridging peroxisome function with Wnt/β-catenin signaling during development.
Collapse
Affiliation(s)
- Jonathan T. Vu
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Katherine U. Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Connor J. Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Soham P. Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lori Mandjikian
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A. Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Chris D. Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
19
|
Sümer Coşar Ö, Öztürk H, Sarı S, Vilarinho S, Kayhan G, Eğritaş Gürkan Ö, Dalgıç B. Variable Clinical Spectrum of Inborn Errors of Bile Acid Synthesis: A Report of 10 Cases. EXP CLIN TRANSPLANT 2024; 22:100-105. [PMID: 39498929 DOI: 10.6002/ect.pedsymp2024.o29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
OBJECTIVES Inborn errors of bile acid synthesis are rare genetic disorders that usually present as neonatal cholestasis and liver disease in older children and adults. The symptomatology of inborn errors of bile acid synthesis can markedly vary among individuals, ranging from mild to severe conditions. Diagnosis is based on genetic tests and/or urine liquid secondary ionization mass spectrometry. Here, we have described characteristics of patients who were diagnosed with inborn errors of bile acid synthesis in our department. MATERIALS AND METHODS We retrospectively evaluated data from patients diagnosed with inborn errors of bile acid synthesis by urine bile acid analysis and/or genetic tests between 2013 and 2023. RESULTS Ten patients (8 boys, 2 girls) born to consanguineous parents were diagnosed with inborn errors of bile acid synthesis during the study period. Six patients were diagnosed with 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency, 2 patients with peroxisomal acyl-CoA oxidase 2 deficiency, and 2 patients with peroxisome biogenesis disorder. In patients with 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency, 3 patients were monitored with cholic acid treatment, 2 underwent liver transplant due to liver failure, and 1 patient died from liver failure. Ursodeoxycholic acid treatment was given to patients with acyl-CoA oxidase 2 deficiency. Cholic acid was given to patients with peroxisome biogenesis disorder. CONCLUSIONS Inborn errors of bile acid synthesis can cause a variety of liver diseases, from asymptomatic liver enzyme elevation to cirrhosis. Clinical findings may include neurological symptoms and fat and fat-soluble vitamin malabsorption complications. Deficiency of 3β-hydroxy-Δ5-C27-steroid dehydrogenase is the most common bile acid synthetic defect presenting in cholestasis in infancy and childhood. Cholic acid is effective for most patients with inborn errors of bile acid synthesis. If patients do not receive an early diagnosis, progressive liver disease or other serious complications may develop.
Collapse
Affiliation(s)
- Özlem Sümer Coşar
- From Gazi University School of Medicine, Department of Pediatric Gastroenterology Hepatology and Nutrition, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
20
|
Karuntu JS, Klouwer FCC, Engelen M, Boon CJF. Systematic study of ophthalmological findings in 10 patients with PEX1-mediated Zellweger spectrum disorder. Ophthalmic Genet 2024; 45:351-362. [PMID: 38664000 DOI: 10.1080/13816810.2024.2330389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE This cross-sectional study describes the ophthalmological and general phenotype of 10 patients from six different families with a comparatively mild form of Zellweger spectrum disorder (ZSD), a rare peroxisomal disorder. METHODS Ophthalmological assessment included best-corrected visual acuity (BCVA), perimetry, microperimetry, ophthalmoscopy, fundus photography, spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. Medical records were reviewed for medical history and systemic manifestations of ZSD. RESULTS Nine patients were homozygous for c.2528 G > A (p.Gly843Asp) variants in PEX1 and one patient was compound heterozygous for c.2528 G>A (p.Gly843Asp) and c.2097_2098insT (p.Ile700TyrfsTer42) in PEX1. Median age was 22.6 years (interquartile range (IQR): 15.9 - 29.9 years) at the most recent examination, with a median symptom duration of 22.1 years. Symptom onset was variable with presentations of hearing loss (n = 7) or nyctalopia/reduced visual acuity (n = 3) at a median age of 6 months (IQR: 1.9-8.3 months). BCVA (median of 0.8 logMAR; IQR: 0.6-0.9 logMAR) remained stable over 10.8 years and all patients were hyperopic. Fundus examination revealed a variable retinitis pigmentosa (RP)-like phenotype with rounded hyperpigmentations as most prominent feature in six out of nine patients. Electroretinography, visual field measurements, and microperimetry further established the RP-like phenotype. Multimodal imaging revealed significant intraretinal fluid cavities on SD-OCT and a remarkable pattern of hyperautofluorescent abnormalities on FAF in all patients. CONCLUSION This study highlights the ophthalmological phenotype resembling RP with moderate to severe visual impairment in patients with mild ZSD. These findings can aid ophthalmologists in diagnosing, counselling, and managing patients with mild ZSD.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Femke C C Klouwer
- Department of Paediatric Neurology/Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Paediatric Neurology/Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Mares Beltran CF, Tise CG, Barrick R, Niehaus AD, Sponberg R, Chang R, Enns GM, Abdenur JE. Newborn Screening for X-Linked Adrenoleukodystrophy (X-ALD): Biochemical, Molecular, and Clinical Characteristics of Other Genetic Conditions. Genes (Basel) 2024; 15:838. [PMID: 39062617 PMCID: PMC11275617 DOI: 10.3390/genes15070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions beyond X-ALD that can also result in elevated C26:0-LPC by NBS. We describe the biochemical, molecular, and clinical characteristics of nine patients from two metabolic centers in California who screened positive by NBS for elevated C26:0-LPC between 2016 and 2022 and were ultimately diagnosed with a genetic condition other than X-ALD. Seven individuals were diagnosed with Zellweger spectrum disorder (ZSD) due to biallelic variants in PEX genes. One male was diagnosed with Klinefelter syndrome and one female was found to have an X chromosome contiguous gene deletion syndrome after the identification of a heterozygous VUS and hemizygous VUS variant in ABCD1, respectively. Patients with ZSD had significantly higher first- and second-tier C26:0-LPC levels compared to the two non-ZSD cases. Identification of children with ZSD and atypical patterns of ABCD1 variants is a secondary benefit of NBS for X-ALD, leading to earlier diagnosis, prompt therapeutic initiation, and more accurate genetic counseling. As screening for X-ALD continues via the measurement of C26:0-LPC, our knowledge of additional genetic conditions associated with elevated C26:0-LPC will continue to advance, allowing for increased recognition of other genetic disorders for which early intervention is warranted.
Collapse
Affiliation(s)
- Carlos F. Mares Beltran
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Division of Medical Genetics, Albany Medical Center (AMC), Albany, NY 12208, USA
| | - Christina G. Tise
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| | - Annie D. Niehaus
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA
| | - Rebecca Sponberg
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| | - Richard Chang
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| | - Gregory M. Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA
| | - Jose E. Abdenur
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| |
Collapse
|
22
|
Kan S, Hou Q, Shi J, Zhang M, Xu F, Liu Z, Jiang S. EHHADH deficiency regulates pexophagy and accelerates tubulointerstitial injury in diabetic kidney disease. Cell Death Discov 2024; 10:289. [PMID: 38879653 PMCID: PMC11180138 DOI: 10.1038/s41420-024-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024] Open
Abstract
Peroxisomal L-bifunctional enzyme (EHHADH) plays a role in the classic peroxisomal fatty acid β-oxidation pathway; however, the relationship between EHHADH expression and diabetic kidney disease has not been well understood. Here, we found that endogenous EHHADH levels were strongly correlated with the progression and severity of diabetic nephropathy in T2D patients. EHHADH knockout mice exhibited worsened renal tubular injury in diabetic mice. Furthermore, EHHADH is a modulator of pexophagy. In renal tubular epithelial cells (RTECs) in vitro, the knockdown of EHHADH induced a dramatic loss of peroxisomes. The loss of peroxisomes in EHHADH-deficient RTECs was restored by either an autophagic inhibitor 3-methyladenine or bafilomycin A1 both in vitro and in vivo. NBR1 was required for pexophagy in EHHADH-knockdown cells, where the level of reactive oxygen species (ROS) was increased, while inhibition of ROS blocked pexophagy. In summary, our findings revealed EHHADH deficiency accelerated renal injury in DKD as a modulator of pexophagy.
Collapse
Affiliation(s)
- Shuyan Kan
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Hou
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Song Jiang
- National Clinical Research Center for Kidney Disease, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
23
|
Zou H, Sutherland L, Geddie B. Pigmentary retinal dystrophy associated with peroxisome biogenesis disorder-Zellweger syndrome spectrum. Oxf Med Case Reports 2024; 2024:omae067. [PMID: 38860019 PMCID: PMC11162583 DOI: 10.1093/omcr/omae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Pigmentary retinal dystrophy (PRD) is a group of inherited disorders involving the progressive degeneration of rod and cone photoreceptors and the retinal pigment epithelium (RPE), which can progress to pigmentary retinopathy (PR). We present a case of PRD in a female pediatric patient who has pathogenic variants in the PRPH2 and PEX1 genes. The patient has associated macular edema and secondary visual impairment. Treatment has included serial dexamethasone intravitreal implant injections and topical dorzolamide. The PEX1 gene mutation is associated with peroxisome biogenesis disorder-Zellweger syndrome spectrum (PBD-ZSS) and resulting retinal dystrophies. The PRPH2 mutation may play a role in macular edema and PRD, as it is implicated in macular degeneration, choroid defects, and photoreceptor dysfunction. In this case, we review multiple gene mutations playing potential etiologic roles for PRD and discuss care management.
Collapse
Affiliation(s)
- Henry Zou
- Michigan State University College of Human Medicine, 15 Michigan St NE, Grand Rapids, MI 49503, United States
| | - Liliya Sutherland
- Retina Specialists of Michigan, 15 Michigan St NE, Grand Rapids, MI 49503, United States
| | - Brooke Geddie
- Pediatric Ophthalmology, Helen DeVos Children’s Hospital, 15 Michigan St NE, Grand Rapids, MI 49503, United States
| |
Collapse
|
24
|
Wangler MF, Chao YH, Roth M, Welti R, McNew JA. Drosophila Models Uncover Substrate Channeling Effects on Phospholipids and Sphingolipids in Peroxisomal Biogenesis Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591192. [PMID: 38746221 PMCID: PMC11092477 DOI: 10.1101/2024.04.26.591192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Peroxisomal Biogenesis Disorders Zellweger Spectrum (PBD-ZSD) disorders are a group of autosomal recessive defects in peroxisome formation that produce a multi-systemic disease presenting at birth or in childhood. Well documented clinical biomarkers such as elevated very long chain fatty acids (VLCFA) are key biochemical diagnostic findings in these conditions. Additional, secondary biochemical alterations such as elevated very long chain lysophosphatidylcholines are allowing newborn screening for peroxisomal disease. In addition, a more widespread impact on metabolism and lipids is increasingly being documented by metabolomic and lipidomic studies. Here we utilize Drosophila models of pex2 and pex16 as well as human plasma from individuals with PEX1 mutations. We identify phospholipid abnormalities in Drosophila larvae and brain characterized by differences in the quantities of phosphatidylcholine (PC) and phosphatidylethanolamines (PE) with long chain lengths and reduced levels of intermediate chain lengths. For diacylglycerol (DAG) the precursor of PE and PC through the Kennedy pathway, the intermediate chain lengths are increased suggesting an imbalance between DAGs and PE and PC that suggests the two acyl chain pools are not in equilibrium. Altered acyl chain lengths are also observed in PE ceramides in the fly models. Interestingly, plasma from human subjects exhibit phospholipid alterations similar to the fly model. Moreover, human plasma shows reduced levels of sphingomyelin with 18 and 22 carbon lengths but normal levels of C24. Our results suggest that peroxisomal biogenesis defects alter shuttling of the acyl chains of multiple phospholipid and ceramide lipid classes, whereas DAG species with intermediate fatty acids are more abundant. These data suggest an imbalance between de novo synthesis of PC and PE through the Kennedy pathway and remodeling of existing PC and PE through the Lands cycle. This imbalance is likely due to overabundance of very long and long acyl chains in PBD and a subsequent imbalance due to substrate channeling effects. Given the fundamental role of phospholipid and sphingolipids in nervous system functions, these observations suggest PBD-ZSD are diseases characterized by widespread cell membrane lipid abnormalities.
Collapse
|
25
|
Granadeiro L, Zarralanga VE, Rosa R, Franquinho F, Lamas S, Brites P. Ataxia with giant axonopathy in Acbd5-deficient mice halted by adeno-associated virus gene therapy. Brain 2024; 147:1457-1473. [PMID: 38066620 DOI: 10.1093/brain/awad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/06/2024] Open
Abstract
Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal β-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Luis Granadeiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Violeta Enríquez Zarralanga
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Ricardo Rosa
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Filipa Franquinho
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Sofia Lamas
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| |
Collapse
|
26
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
27
|
Stephanie B, Michael C, Sreenath TG. Safety and tolerance of the ketogenic diet in patients with Zellweger Syndrome. Epilepsy Behav Rep 2024; 26:100655. [PMID: 38501062 PMCID: PMC10945160 DOI: 10.1016/j.ebr.2024.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Zellweger Syndrome is a peroxisomal disorder that can lead to elevation of long chain fatty acids and epilepsy, which can be drug resistant. The treatment of drug resistant epilepsy can include the ketogenic diet in appropriately chosen patients. Typically, the ketogenic diet is contraindicated in individuals with defects in fatty acid metabolism because of the diet's reliance on medium and long chain fatty acids. To our knowledge this is the first publication outlining the use of the ketogenic diet in patients with defects in beta oxidation of very long chain fatty acids. We present two patients with Zellweger Syndrome who were placed on a ketogenic diet for drug resistant epilepsy. Safety and tolerance of the ketogenic diet in patients with Zellweger Syndrome.
Collapse
Affiliation(s)
- Borst Stephanie
- The University of Iowa, 225 S Grand Ave Iowa City, Iowa 52242, United States
| | - Ciliberto Michael
- The University of Iowa Stead Family Children’s Hospital, 200 Hawkins Drive Iowa City, Iowa 52242, United States
| | - Thati Ganganna Sreenath
- The University of Iowa Stead Family Children’s Hospital, 200 Hawkins Drive Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Morales-Romero B, González de Aledo-Castillo JM, Fernández Sierra C, Martínez Carreira C, Zaragoza Bonet C, Fernández Bonifacio R, Caro Miró MA, Argudo-Ramírez A, López Galera RM, García-Villoria J. Plasma C24:0- and C26:0-lysophosphatidylcholines are reliable biomarkers for the diagnosis of peroxisomal β-oxidation disorders. J Lipid Res 2024; 65:100516. [PMID: 38320654 PMCID: PMC10910329 DOI: 10.1016/j.jlr.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal β-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.
Collapse
Affiliation(s)
- Blai Morales-Romero
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
| | | | - Cristina Fernández Sierra
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carmen Martínez Carreira
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carles Zaragoza Bonet
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rosa Fernández Bonifacio
- CORE Laboratory, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria Antònia Caro Miró
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Argudo-Ramírez
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rosa María López Galera
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Judit García-Villoria
- Section of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
29
|
Vu JT, Tavasoli KU, Mandjikian L, Sheedy CJ, Bacal J, Morrissey MA, Richardson CD, Gardner BM. A genome-wide screen links peroxisome regulation with Wnt signaling through RNF146 and tankyrase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578667. [PMID: 38352406 PMCID: PMC10862876 DOI: 10.1101/2024.02.02.578667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerase tankyrase, which binds the peroxisomal membrane protein PEX14. We propose that RNF146 and tankyrase regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased tankyrase and RNF146-dependent degradation of non-peroxisomal substrates, including the beta-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of beta-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation, but also a novel role in bridging peroxisome function with Wnt/beta-catenin signaling during development.
Collapse
Affiliation(s)
- Jonathan T Vu
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lori Mandjikian
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
30
|
Gano D, Pardo AC, Glenn OA, Sherr E. Diverse childhood neurologic disorders and outcomes following fetal neurologic consultation. Semin Fetal Neonatal Med 2024; 29:101524. [PMID: 38609800 DOI: 10.1016/j.siny.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Fetal neurology encompasses the full spectrum of neonatal and child neurology presentations, with complex additional layers of diagnostic and prognostic challenges unique to the specific prenatal consultation. Diverse genetic and acquired etiologies with a range of potential outcomes may be encountered. Three clinical case presentations are discussed that highlight how postnatal phenotyping and longitudinal follow-up are essential to address the uncertainties that arise in utero, after birth, and in childhood, as well as to provide continuity of care.
Collapse
Affiliation(s)
- Dawn Gano
- Departments of Neurology & Pediatrics, UCSF School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Andrea C Pardo
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Orit A Glenn
- Department of Radiology & Biomedical Imaging, UCSF School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elliott Sherr
- Departments of Neurology & Pediatrics, UCSF School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Huang Y, Liu L, Fang F, Zhou H, Liu X. Identification of a novel heterozygous variant in the PEX26 gene in an infant: a case report. Transl Pediatr 2024; 13:192-199. [PMID: 38323187 PMCID: PMC10839275 DOI: 10.21037/tp-23-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 02/08/2024] Open
Abstract
Background The protein PEX26 is involved in the biogenesis and maintenance of peroxisomes, which are organelles within cells. Dysfunction of PEX26 results in peroxisome biogenesis disorders (PBDs) complementation group 8 (CG8), leading to Zellweger spectrum disorders (ZSDs). These disorders present as a syndrome with multiple congenital anomalies, varying in clinical severity. Case Description We present the case of a 7-month-old boy who exhibited hepatic impairment with hepatomegaly, sensorineural hearing loss, developmental delay, abnormal ossification, and mild craniofacial dysmorphology. Tandem mass spectrometry analysis of plasma isolated from whole blood revealed a significant increase in the levels of very long chain fatty acids (VLCFAs) C26:0, C26:0/C22:0, and C24:0/C22:0, consistent with peroxisomal fatty acid oxidation disorder. Exome sequencing identified two variants in the PEX26 gene (c.347T>C and c.616C>T), with the latter being a suspected pathogenic variation. The variant can lead to a defect in the PEX26 gene, resulting in impaired peroxisome biogenesis, β-oxidation of VLCFAs, and disruption of other biochemical pathways. Ultimately, this cascade of events manifests as ZSDs. Currently, symptomatic supportive treatment is the main approach for managing this condition and regular follow-up is being conducted for the patient. Conclusions The present study introduces a novel heterozygous variant comprising two previously unidentified variants in the PEX26 gene, thereby expanding the range of known genetic alterations and highlighting the effectiveness of highly efficient exome sequencing in patients with undetermined multiple system dysfunctions.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Kim YH, Park NY, Jo DS, Bae JE, Kim JB, Park K, Jeong K, Kim P, Yeom E, Cho DH. Inhibition of VHL by VH298 Accelerates Pexophagy by Activation of HIF-1α in HeLa Cells. Molecules 2024; 29:482. [PMID: 38257395 PMCID: PMC10819186 DOI: 10.3390/molecules29020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.
Collapse
Affiliation(s)
- Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
| | - Doo Sin Jo
- ORGASIS Corp., Suwon 16229, Republic of Korea
| | - Ji-Eun Bae
- KNU LAMP Research Center, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
| | - Kyuhee Park
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Kwiwan Jeong
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp., Suwon 16229, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
- KNU LAMP Research Center, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
- ORGASIS Corp., Suwon 16229, Republic of Korea
- Organelle Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Yergeau C, Coussa RG, Antaki F, Argyriou C, Koenekoop RK, Braverman NE. Zellweger Spectrum Disorder: Ophthalmic Findings from a New Natural History Study Cohort and Scoping Literature Review. Ophthalmology 2023; 130:1313-1326. [PMID: 37541626 DOI: 10.1016/j.ophtha.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Individuals with Zellweger spectrum disorder (ZSD) manifest a spectrum of clinical phenotypes but almost all have retinal degeneration leading to blindness. The onset, extent, and progression of retinal findings have not been well described. It is crucial to understand the natural history of vision loss in ZSD to define reliable endpoints for future interventional trials. Herein, we describe ophthalmic findings in the largest number of ZSD patients to date. DESIGN Retrospective review of longitudinal data from medical charts and review of cross-sectional data from the literature. PARTICIPANTS Sixty-six patients with ZSD in the retrospective cohort and 119 patients reported in the literature, divided into 4 disease phenotypes based on genotype or clinical severity. METHODS We reviewed ophthalmology records collected from the retrospective cohort (Clinicaltrials.gov NCT01668186) and performed a scoping review of the literature for ophthalmic findings in patients with ZSD. We extracted available ophthalmic data and analyzed by age and disease severity. MAIN OUTCOME MEASURES Visual acuity (VA), posterior and anterior segment descriptions, nystagmus, refraction, electroretinography findings, visual evoked potentials, and OCT results and images. RESULTS Visual acuity was worse at younger ages in those with severe disease compared with older patients with intermediate to mild disease for all 78 participants analyzed, with a median VA of 0.93 logarithm of the minimum angle of resolution (Snellen 20/320). Longitudinal VA data revealed slow loss over time and legal blindness onset at an average age of 7.8 years. Funduscopy showed retinal pigmentation, macular abnormalities, small or pale optic discs, and attenuated vessels with higher prevalence in milder severity groups and did not change with age. Electroretinography waveforms were diminished in 91% of patients, 46% of which were extinguished and did not change with age. OCT in milder patients revealed schitic changes in 18 of 23 individuals (age range 1.8 to 30 years), with evolution or stable macular edema. CONCLUSIONS In ZSD, VA slowly deteriorates and is associated with disease severity, serial electroretinography is not useful for documenting vision loss progression, and intraretinal schitic changes may be common. Multiple systematic measures are required to assess retinal dystrophy accurately in ZSD, including functional vision measures. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Christine Yergeau
- Child Health and Human Development Axis, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Razek G Coussa
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Children's Hospital of Oklahoma, Oklahoma City, Oklahoma; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Fares Antaki
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Catherine Argyriou
- Child Health and Human Development Axis, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - Robert K Koenekoop
- Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Paediatric Surgery, McGill University, Montreal, Quebec, Canada
| | - Nancy E Braverman
- Child Health and Human Development Axis, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Gragnaniello V, Gueraldi D, Puma A, Commone A, Cazzorla C, Loro C, Porcù E, Stornaiuolo M, Miglioranza P, Salviati L, Wanders RJA, Burlina A. Abnormal activation of MAPKs pathways and inhibition of autophagy in a group of patients with Zellweger spectrum disorders and X-linked adrenoleukodystrophy. Orphanet J Rare Dis 2023; 18:358. [PMID: 37974207 PMCID: PMC10652488 DOI: 10.1186/s13023-023-02940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Andrea Puma
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Anna Commone
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Christian Loro
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Maria Stornaiuolo
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Paolo Miglioranza
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padua, Italy
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy.
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy.
| |
Collapse
|
35
|
Prinzi J, Pasquali M, Hobert JA, Palmquist R, Wong KN, Francis S, De Biase I. Diagnosing X-Linked Adrenoleukodystrophy after Implementation of Newborn Screening: A Reference Laboratory Perspective. Int J Neonatal Screen 2023; 9:64. [PMID: 37987477 PMCID: PMC10660695 DOI: 10.3390/ijns9040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is caused by pathogenic variants in the ABCD1 gene, encoding for the adrenoleukodystrophy protein (ALDP), leading to defective peroxisomal β-oxidation of very long-chain and branched-chain fatty acids (VLCFA). ALD manifests in both sexes with a spectrum of phenotypes, but approximately 35% of affected males develop childhood cerebral adrenoleukodystrophy (CCALD), which is lethal without hematopoietic stem cell transplant performed before symptoms start. Hence, ALD was added to the Recommended Uniform Screening Panel after the successful implementation in New York State (2013-2016). To date, thirty-five states have implemented newborn screening (NBS) for ALD, and a few programs have reported on the successes and challenges experienced. However, the overall impact of NBS on early detection of ALD has yet to be fully determined. Here, we conducted a retrospective analysis of VLCFA testing performed by our reference laboratory (ARUP Laboratories, Salt Lake City, UT, USA) over 10 years. Rate of detection, age at diagnosis, and male-to-female ratio were evaluated in patients with abnormal results before and after NBS implementation. After NBS inclusion, a significant increase in abnormal results was observed (471/6930, 6.8% vs. 384/11,670, 3.3%; p < 0.0001). Patients with ALDP deficiency identified via NBS were significantly younger (median age: 30 days vs. 21 years; p < 0.0001), and males and females were equally represented. ALD inclusion in NBS programs has increased pre-symptomatic detection of this disease, which is critical in preventing adrenal crisis as well as the severe cerebral form.
Collapse
Affiliation(s)
- Julia Prinzi
- Department of Human Genetics, Graduate Program in Genetic Counseling, University of Utah, Salt Lake City, UT 84112, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Laboratories, Salt Lake City, UT 84108, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (K.N.W.)
| | - Judith A. Hobert
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Laboratories, Salt Lake City, UT 84108, USA
| | - Rachel Palmquist
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (K.N.W.)
| | - Kristen N. Wong
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (K.N.W.)
| | | | - Irene De Biase
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Laboratories, Salt Lake City, UT 84108, USA
| |
Collapse
|
36
|
Zhi Y, Liu L, Wang H, Chen X, Lv Y, Cui X, Chang H, Wang Y, Cui S. Prenatal exome sequencing analysis in fetuses with central nervous system anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:721-726. [PMID: 37204857 DOI: 10.1002/uog.26254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To evaluate the utility of prenatal exome sequencing (pES) in fetuses with central nervous system (CNS) abnormalities. METHODS This was a retrospective cohort study of fetuses identified to have CNS abnormality on prenatal ultrasound and/or magnetic resonance imaging. All fetuses were first analyzed by chromosomal microarray analysis (CMA). Fetuses with a confirmed aneuploidy or causal pathogenic copy-number variant (CNV) on CMA did not undergo pES analysis and were excluded, while those with a negative CMA result were offered pES testing. RESULTS Of the 167 pregnancies included in the study, 42 (25.1%) were identified to have a pathogenic or likely pathogenic (P/LP) variant. The diagnostic rate was significantly higher in fetuses with a non-isolated CNS abnormality than in those with a single CNS abnormality (35.7% (20/56) vs 14.5% (8/55); P = 0.010). Moreover, when a fetus had three or more CNS abnormalities, the positive diagnostic rate increased to 42.9%. A total of 25/42 (59.5%) cases had de-novo mutations, while, in the remaining cases, mutations were inherited and carried a significant risk of recurrence. Families whose fetus carried a P/LP mutation were more likely to choose advanced pregnancy termination than those with a variant of uncertain significance, secondary/incidental finding or negative pES result (83.3% (25/30) vs 41.3% (38/92); P < 0.001). CONCLUSION pES improved the identification of genetic disorders in fetuses with CNS anomalies without a chromosomal abnormality or CNV identified on CMA, regardless of the number of CNS anomalies and presence of extracranial abnormality. We also demonstrated that pES findings can significantly impact parental decision-making. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y Zhi
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - L Liu
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - H Wang
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - X Chen
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Y Lv
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - X Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - H Chang
- Scientific Research Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Y Wang
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - S Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
37
|
Wangler MF, Lesko B, Dahal R, Jangam S, Bhadane P, Wilson TE, McPheron M, Miller MJ. Dicarboxylic acylcarnitine biomarkers in peroxisome biogenesis disorders. Mol Genet Metab 2023; 140:107680. [PMID: 37567036 PMCID: PMC10840807 DOI: 10.1016/j.ymgme.2023.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The peroxisome is an essential eukaryotic organelle with diverse metabolic functions. Inherited peroxisomal disorders are associated with a wide spectrum of clinical outcomes and are broadly divided into two classes, those impacting peroxisome biogenesis (PBD) and those impacting specific peroxisomal factors. Prior studies have indicated a role for acylcarnitine testing in the diagnosis of some peroxisomal diseases through the detection of long chain dicarboxylic acylcarnitine abnormalities (C16-DC and C18-DC). However, there remains limited independent corroboration of these initial findings and acylcarnitine testing for peroxisomal diseases has not been widely adopted in clinical laboratories. To explore the utility of acylcarnitine testing in the diagnosis of peroxisomal disorders we applied a LC-MS/MS acylcarnitine method to study a heterogenous clinical sample set (n = 598) that included residual plasma specimens from nineteen patients with PBD caused by PEX1 or PEX6 deficiency, ranging in severity from lethal neonatal onset to mild late onset forms. Multiple dicarboxylic acylcarnitines were significantly elevated in PBD patients including medium to long chain (C8-DC to C18-DC) species as well as previously undescribed elevations of malonylcarnitine (C3-DC) and very long chain dicarboxylic acylcarnitines (C20-DC and C22-DC). The best performing plasma acylcarnitine biomarkers, C20-DC and C22-DC, were detected at elevated levels in 100% and 68% of PBD patients but were rarely elevated in patients that did not have a PBD. We extended our analysis to residual newborn screening blood spot cards and were able to detect dicarboxylic acylcarnitine abnormalities in a newborn with a PBD caused by PEX6 deficiency. Similar to prior studies, we failed to detect substantial dicarboxylic acylcarnitine abnormalities in blood spot cards from patients with x-linked adrenoleukodystrophy (x-ald) indicating that these biomarkers may have utility in quickly narrowing the differential diagnosis in patients with a positive newborn screen for x-ald. Overall, our study identifies widespread dicarboxylic acylcarnitine abnormalities in patients with PBD and highlights key acylcarnitine biomarkers for the detection of this class of inherited metabolic disease.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Barbara Lesko
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - Rejwi Dahal
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Pradnya Bhadane
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Theodore E Wilson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Molly McPheron
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
38
|
Schumann A, Schultheiss UT, Ferreira CR, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. XIV. Metabolic kidney diseases. Mol Genet Metab 2023; 140:107683. [PMID: 37597335 PMCID: PMC11747985 DOI: 10.1016/j.ymgme.2023.107683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Kidney disease is a global health burden with high morbidity and mortality. Causes of kidney disease are numerous, extending from common disease groups like diabetes and arterial hypertension to rare conditions including inherited metabolic diseases (IMDs). Given its unique anatomy and function, the kidney is a target organ in about 10% of known IMDs, emphasizing the relevant contribution of IMDs to kidney disease. The pattern of injury affects all segments of the nephron including glomerular disease, proximal and distal tubular damage, kidney cyst formation, built-up of nephrocalcinosis and stones as well as severe malformations. We revised and updated the list of known metabolic etiologies associated with kidney involvement and found 190 relevant IMDs. This represents the 14th of a series of educational articles providing a comprehensive and revised list of metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Ulla T Schultheiss
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine, and Medical Center, University of Freiburg, Institute of Genetic Epidemiology, Freiburg, Germany.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, USA.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
39
|
Waterham HR, Koster J, Ebberink MS, Ješina P, Zeman J, Nosková L, Kmoch S, Devic P, Cheillan D, Wanders RJA, Ferdinandusse S. Autosomal dominant Zellweger spectrum disorder caused by de novo variants in PEX14 gene. Genet Med 2023; 25:100944. [PMID: 37493040 DOI: 10.1016/j.gim.2023.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
PURPOSE Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.
Collapse
Affiliation(s)
- Hans R Waterham
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam Reproduction & Development, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Janet Koster
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Merel S Ebberink
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Jiri Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Lenka Nosková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Stanislav Kmoch
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Perrine Devic
- Centre Hospitalier Universitaire de Lyon, CHU Lyon·U 301, Hopital Neurologique, Bron, France
| | - David Cheillan
- Service Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Métaboliques, Erythrocytaires et Dépistage Périnatal, Centre de Biologie et de Pathologie Est, Groupement Hospitalier Est - Hospices Civils de Lyon, Bron Cedex, France
| | - Ronald J A Wanders
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam Reproduction & Development, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Sacha Ferdinandusse
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29:2334-2365. [PMID: 37154292 DOI: 10.1111/odi.14599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Sabbaghi H, Madani S, Ahmadieh H, Daftarian N, Suri F, Khorrami F, Saviz P, Shahriari MH, Motevasseli T, Fekri S, Nourinia R, Moradian S, Sheikhtaheri A. A health terminological system for inherited retinal diseases: Content coverage evaluation and a proposed classification. PLoS One 2023; 18:e0281858. [PMID: 37540684 PMCID: PMC10403057 DOI: 10.1371/journal.pone.0281858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/02/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE To present a classification of inherited retinal diseases (IRDs) and evaluate its content coverage in comparison with common standard terminology systems. METHODS In this comparative cross-sectional study, a panel of subject matter experts annotated a list of IRDs based on a comprehensive review of the literature. Then, they leveraged clinical terminologies from various reference sets including Unified Medical Language System (UMLS), Online Mendelian Inheritance in Man (OMIM), International Classification of Diseases (ICD-11), Systematized Nomenclature of Medicine (SNOMED-CT) and Orphanet Rare Disease Ontology (ORDO). RESULTS Initially, we generated a hierarchical classification of 62 IRD diagnosis concepts in six categories. Subsequently, the classification was extended to 164 IRD diagnoses after adding concepts from various standard terminologies. Finally, 158 concepts were selected to be classified into six categories and genetic subtypes of 412 cases were added to the related concepts. UMLS has the greatest content coverage of 90.51% followed respectively by SNOMED-CT (83.54%), ORDO (81.01%), OMIM (60.76%), and ICD-11 (60.13%). There were 53 IRD concepts (33.54%) that were covered by all five investigated systems. However, 2.53% of the IRD concepts in our classification were not covered by any of the standard terminologies. CONCLUSIONS This comprehensive classification system was established to organize IRD diseases based on phenotypic and genotypic specifications. It could potentially be used for IRD clinical documentation purposes and could also be considered a preliminary step forward to developing a more robust standard ontology for IRDs or updating available standard terminologies. In comparison, the greatest content coverage of our proposed classification was related to the UMLS Metathesaurus.
Collapse
Affiliation(s)
- Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Madani
- Department of HealthIT, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Khorrami
- Department of Health Information Technology, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Proshat Saviz
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shahriari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmineh Motevasseli
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahba Fekri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Nourinia
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Moradian
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Sheikhtaheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Costello JL, Koster J, Silva BSC, Worthy HL, Schrader TA, Hacker C, Passmore J, Kuypers FA, Waterham HR, Schrader M. Differential roles for ACBD4 and ACBD5 in peroxisome-ER interactions and lipid metabolism. J Biol Chem 2023; 299:105013. [PMID: 37414147 PMCID: PMC10410513 DOI: 10.1016/j.jbc.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) are intimately linked subcellular organelles, physically connected at membrane contact sites. While collaborating in lipid metabolism, for example, of very long-chain fatty acids (VLCFAs) and plasmalogens, the ER also plays a role in peroxisome biogenesis. Recent work identified tethering complexes on the ER and peroxisome membranes that connect the organelles. These include membrane contacts formed via interactions between the ER protein VAPB (vesicle-associated membrane protein-associated protein B) and the peroxisomal proteins ACBD4 and ACBD5 (acyl-coenzyme A-binding domain protein). Loss of ACBD5 has been shown to cause a significant reduction in peroxisome-ER contacts and accumulation of VLCFAs. However, the role of ACBD4 and the relative contribution these two proteins make to contact site formation and recruitment of VLCFAs to peroxisomes remain unclear. Here, we address these questions using a combination of molecular cell biology, biochemical, and lipidomics analyses following loss of ACBD4 or ACBD5 in HEK293 cells. We show that the tethering function of ACBD5 is not absolutely required for efficient peroxisomal β-oxidation of VLCFAs. We demonstrate that loss of ACBD4 does not reduce peroxisome-ER connections or result in the accumulation of VLCFAs. Instead, the loss of ACBD4 resulted in an increase in the rate of β-oxidation of VLCFAs. Finally, we observe an interaction between ACBD5 and ACBD4, independent of VAPB binding. Overall, our findings suggest that ACBD5 may act as a primary tether and VLCFA recruitment factor, whereas ACBD4 may have regulatory functions in peroxisomal lipid metabolism at the peroxisome-ER interface.
Collapse
Affiliation(s)
| | - Janet Koster
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz S C Silva
- Department of Biosciences, University of Exeter, Exeter, UK; Luxembourg Centre for Systems Biomedicine, Campus Belval | House of Biomedicine II, Université du Luxembourg, Belvaux, Luxembourg
| | | | | | | | - Josiah Passmore
- Department of Biosciences, University of Exeter, Exeter, UK; Division of Cell Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Hans R Waterham
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
43
|
Nwagbo U, Bernstein PS. Understanding the Roles of Very-Long-Chain Polyunsaturated Fatty Acids (VLC-PUFAs) in Eye Health. Nutrients 2023; 15:3096. [PMID: 37513514 PMCID: PMC10383069 DOI: 10.3390/nu15143096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Lipids serve many roles in the neural system, from synaptic stabilization and signaling to DNA regulation and neuroprotection. They also regulate inflammatory responses, maintain cellular membrane structure, and regulate the homeostatic balance of ions and signaling molecules. An imbalance of lipid subgroups is implicated in the progression of many retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, and diet can play a key role in influencing these diseases' onset, progression, and severity. A special class of lipids termed very-long-chain polyunsaturated fatty acids (VLC-PUFAs) is found exclusively in mammalian vertebrate retinas and a few other tissues. They comprise <2% of fatty acids in the retina and are depleted in the retinas of patients with diseases like diabetic retinopathy and AMD. However, the implications of the reduction in VLC-PUFA levels are poorly understood. Dietary supplementation studies and ELOVL4 transgene studies have had positive outcomes. However, much remains to be understood about their role in retinal health and the potential for targeted therapies against retinal disease.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S. Bernstein
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
44
|
Tokatly Latzer I, Pearl PL. Treatment of neurometabolic epilepsies: Overview and recent advances. Epilepsy Behav 2023; 142:109181. [PMID: 37001467 DOI: 10.1016/j.yebeh.2023.109181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/08/2023]
Abstract
The rarity and heterogeneity of neurometabolic diseases make it challenging to reach evidence-based principles for their specific treatments. Indeed, current treatments for many of these diseases remain symptomatic and supportive. However, an ongoing scientific and medical revolution has led to dramatic breakthroughs in molecular sciences and genetics, revealing precise pathophysiologic mechanisms. Accordingly, this has led to significant progress in the development of novel therapeutic approaches aimed at treating epilepsy resulting from these conditions, as well as their other manifestations. We overview recent notable treatment advancements, from vitamins, trace minerals, and diets to unique medications targeting the elemental pathophysiology at a molecular or cellular level, including enzyme replacement therapy, enzyme enhancing therapy, antisense oligonucleotide therapy, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Colasante C, Bonilla-Martinez R, Berg T, Windhorst A, Baumgart-Vogt E. Peroxisomes during postnatal development of mouse endocrine and exocrine pancreas display cell-type- and stage-specific protein composition. Cell Tissue Res 2023:10.1007/s00441-023-03766-6. [PMID: 37126142 DOI: 10.1007/s00441-023-03766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Peroxisomal dysfunction unhinges cellular metabolism by causing the accumulation of toxic metabolic intermediates (e.g. reactive oxygen species, very -chain fatty acids, phytanic acid or eicosanoids) and the depletion of important lipid products (e.g. plasmalogens, polyunsaturated fatty acids), leading to various proinflammatory and devastating pathophysiological conditions like metabolic syndrome and age-related diseases including diabetes. Because the peroxisomal antioxidative marker enzyme catalase is low abundant in Langerhans islet cells, peroxisomes were considered scarcely present in the endocrine pancreas. Recently, studies demonstrated that the peroxisomal metabolism is relevant for pancreatic cell functionality. During the postnatal period, significant changes occur in the cell structure and the metabolism to trigger the final maturation of the pancreas, including cell proliferation, regulation of energy metabolism, and activation of signalling pathways. Our aim in this study was to (i) morphometrically analyse the density of peroxisomes in mouse endocrine versus exocrine pancreas and (ii) investigate how the distribution and the abundance of peroxisomal proteins involved in biogenesis, antioxidative defence and fatty acid metabolism change during pancreatic maturation in the postnatal period. Our results prove that endocrine and exocrine pancreatic cells contain high amounts of peroxisomes with heterogeneous protein content indicating that distinct endocrine and exocrine cell types require a specific set of peroxisomal proteins depending on their individual physiological functions. We further show that significant postnatal changes occur in the peroxisomal compartment of different pancreatic cells that are most probably relevant for the metabolic maturation and differentiation of the pancreas during the development from birth to adulthood.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Timm Berg
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Informatic, Justus Liebig University, Rudolf-Buchheim-Str. 6, 35392, Gießen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
46
|
De Biase I, Yuzyuk T, Cui W, Zuromski LM, Moser AB, Braverman NE. Quantitative analysis of ethanolamine plasmalogen species in red blood cells using liquid chromatography tandem mass spectrometry for diagnosing peroxisome biogenesis disorders. Clin Chim Acta 2023; 542:117295. [PMID: 36914043 DOI: 10.1016/j.cca.2023.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Plasmalogens are glycerophospholipids characterized by a vinyl-ether bond with a fatty alcohol at the sn-1 position, a polyunsaturated fatty acid at the sn-2 position, and a polar head at the sn-3 position, commonly phosphoethanolamine. Plasmalogens play crucial roles in several cellular processes. Reduced levels have been associated with Alzheimer's and Parkinson's disease progression. Markedly reduced plasmalogens are a classic feature of peroxisome biogenesis disorders (PBD) because plasmalogen synthesis requires functional peroxisomes. Particularly, severe plasmalogen deficiency is the biochemical hallmark of rhizomelic chondrodysplasia punctata (RCDP). Traditionally, plasmalogens are evaluated in red blood cells (RBCs) by gas-chromatography/mass-spectrometry (GC-MS), which cannot distinguish individual species. We developed a liquid-chromatography/tandem mass-spectrometry (LC-MS/MS) method to quantify eighteen phosphoethanolamine plasmalogens in RBCs to diagnose PBD patients, especially RCDP. Validation results showed a specific, robust, and precise method with broad analytical range. Age-specific reference intervals were established; control medians were used to assess plasmalogen deficiency in patients' RBCs. Clinical utility was also confirmed in Pex7 deficient mouse models recapitulating severe and milder RCDP clinical phenotypes. To our knowledge, this is the first attempt to replace the GC-MS method in the clinical laboratory. In addition to diagnosing PBDs, structure-specific plasmalogen quantitation could help understand disease pathogenesis and monitor therapy.
Collapse
Affiliation(s)
- Irene De Biase
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA.
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Wei Cui
- Child Health and Human Development Program, Research Institute of the McGill University, Montreal, Quebec, Canada
| | - Lauren M Zuromski
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nancy E Braverman
- Child Health and Human Development Program, Research Institute of the McGill University, Montreal, Quebec, Canada; Department of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Slanina AM, Coman AE, Anton-Păduraru DT, Popa E, Barbacariu CL, Novac O, Petroaie AD, Bacușcă AI, Manole M, Cosmescu A. PEX6 Mutation in a Child with Infantile Refsum Disease—A Case Report and Literature Review. CHILDREN 2023; 10:children10030530. [PMID: 36980088 PMCID: PMC10047879 DOI: 10.3390/children10030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The aim of this paper is to describe the temporal progression and clinical picture of a 2-year-old child with infantile Refsum disease, as well as the diagnostic procedures performed; this case presented multiple hematologic, metabolic, and developmental complications and progressive disabilities. Genetic testing revealed a mutation of the PEX6 (Peroxisomal Biogenesis Factor 6) gene, and the metabolic profile was consistent with the diagnosis. Particularly, the child also presented altered coagulation factors and developed a spontaneous brain hemorrhage. The clinical picture includes several neurological, ophthalmological, digestive, cutaneous, and endocrine disorders as a result of the very long chain fatty acid accumulation as well as secondary oxidative anomalies. The study of metabolic disorders occurring because of genetic mutations is a subject of core importance in the pathology of children today. The PEX mutations, difficult to identify antepartum, are linked to an array of cell anomalies with severe consequences on the patient’s status, afflicting multiple organs and systems. This is the reason for which our case history may be relevant, including a vast number of symptoms, as well as modified biological parameters.
Collapse
Affiliation(s)
- Ana-Maria Slanina
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Adorata-Elena Coman
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
- Correspondence:
| | - Elena Popa
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Carmen-Liliana Barbacariu
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Otilia Novac
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Antoneta Dacia Petroaie
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Agnes-Iacinta Bacușcă
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Mihaela Manole
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Adriana Cosmescu
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| |
Collapse
|
48
|
O’Sullivan É, Keogh A, Henderson B, Finn SP, Gray SG, Gately K. Treatment Strategies for KRAS-Mutated Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:1635. [PMID: 36980522 PMCID: PMC10046549 DOI: 10.3390/cancers15061635] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Activating mutations in KRAS are highly prevalent in solid tumours and are frequently found in 35% of lung, 45% of colorectal, and up to 90% of pancreatic cancers. Mutated KRAS is a prognostic factor for disease-free survival (DFS) and overall survival (OS) in NSCLC and is associated with a more aggressive clinical phenotype, highlighting the need for KRAS-targeted therapy. Once considered undruggable due to its smooth shallow surface, a breakthrough showed that the activated G12C-mutated KRAS isozyme can be directly inhibited via a newly identified switch II pocket. This discovery led to the development of a new class of selective small-molecule inhibitors against the KRAS G12C isoform. Sotorasib and adagrasib are approved in locally advanced or metastatic NSCLC patients who have received at least one prior systemic therapy. Currently, there are at least twelve KRAS G12C inhibitors being tested in clinical trials, either as a single agent or in combination. In this study, KRAS mutation prevalence, subtypes, rates of occurrence in treatment-resistant invasive mucinous adenocarcinomas (IMAs), and novel drug delivery options are reviewed. Additionally, the current status of KRAS inhibitors, multiple resistance mechanisms that limit efficacy, and their use in combination treatment strategies and novel multitargeted approaches in NSCLC are discussed.
Collapse
Affiliation(s)
- Éabha O’Sullivan
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Anna Keogh
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Brian Henderson
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Stephen P. Finn
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| |
Collapse
|
49
|
Raina R, Lomanta F, Singh S, Anand A, Kalra R, Enukonda V, Barat O, Pandher D, Sethi SK. Cystic Diseases of the Kidneys: From Bench to Bedside. Indian J Nephrol 2023; 33:83-92. [PMID: 37234435 PMCID: PMC10208543 DOI: 10.4103/ijn.ijn_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 02/25/2023] Open
Abstract
Exploration into the causes of hereditary renal cystic diseases demonstrates a deep-rooted connection with the proteomic components of the cellular organelle cilia. Cilia are essential to the signaling cascades, and their dysfunction has been tied to a range of renal cystic diseases initiating with studies on the oak ridge polycystic kidney (ORPK) mouse model. Here, we delve into renal cystic pathologies that have been tied with ciliary proteosome and highlight the genetics associated with each. The pathologies are grouped based on the mode of inheritance, where inherited causes that result in cystic kidney disease phenotypes include autosomal dominant and autosomal recessive polycystic kidney disease, nephronophthisis (Bardet-Biedl syndrome and Joubert Syndrome), and autosomal dominant tubulointerstitial kidney disease. Alternatively, phakomatoses-, also known as neurocutaneous syndromes, associated cystic kidney diseases include tuberous sclerosis (TS) and Von Hippel-Lindau (VHL) disease. Additionally, we group the pathologies by the mode of inheritance to discuss variations in recommendations for genetic testing for biological relatives of a diagnosed individual.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Pediatric Nephrology, Akron Children’s Hospital, Akron, Ohio, USA
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Francis Lomanta
- Department of Nephrology, Akron Children’s Hospital, Akron, USA
| | - Siddhartha Singh
- Department of Pediatric Nephrology, Akron Children’s Hospital, Akron, Ohio, USA
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Alisha Anand
- Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Riti Kalra
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vignasiddh Enukonda
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Oren Barat
- College of Medicine, Northeast Ohio Medical University, Rootstown, USA
| | - Davinder Pandher
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Sidharth K Sethi
- Kidney and Renal Transplant Institute, Medanta, The Medicity Hospital, Gurugram, Haryana, India
| |
Collapse
|
50
|
Fine A, Wirrell E, Nickels K. Optimizing Therapy of Seizures in Children and Adolescents with Developmental Disabilities. NEURODEVELOPMENTAL PEDIATRICS 2023:631-653. [DOI: 10.1007/978-3-031-20792-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|