1
|
Ranjan G, Sehgal P, Scaria V, Sivasubbu S. SCAR-6 elncRNA locus epigenetically regulates PROZ and modulates coagulation and vascular function. EMBO Rep 2024:10.1038/s44319-024-00272-w. [PMID: 39358551 DOI: 10.1038/s44319-024-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we characterize a novel lncRNA-producing gene locus that we name Syntenic Cardiovascular Conserved Region-Associated lncRNA-6 (scar-6) and functionally validate its role in coagulation and cardiovascular function. A 12-bp deletion of the scar-6 locus in zebrafish (scar-6gib007Δ12/Δ12) results in cranial hemorrhage and vascular permeability. Overexpression, knockdown and rescue with the scar-6 lncRNA modulates hemostasis in zebrafish. Molecular investigation reveals that the scar-6 lncRNA acts as an enhancer lncRNA (elncRNA), and controls the expression of prozb, an inhibitor of factor Xa, through an enhancer element in the scar-6 locus. The scar-6 locus suppresses loop formation between prozb and scar-6 sequences, which might be facilitated by the methylation of CpG islands via the prdm14-PRC2 complex whose binding to the locus might be stabilized by the scar-6 elncRNA transcript. Binding of prdm14 to the scar-6 locus is impaired in scar-6gib007Δ12/Δ12 zebrafish. Finally, activation of the PAR2 receptor in scar-6gib007Δ12/Δ12 zebrafish triggers NF-κB-mediated endothelial cell activation, leading to vascular dysfunction and hemorrhage. We present evidence that the scar-6 locus plays a role in regulating the expression of the coagulation cascade gene prozb and maintains vascular homeostasis.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
2
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Levy T, Pichardo T, Silver H, Lerman B, Zweifach J, Halpern D, Siper PM, Kolevzon A, Buxbaum JD. Prospective phenotyping of CHAMP1 disorder indicates that coding mutations may not act through haploinsufficiency. Hum Genet 2023; 142:1385-1394. [PMID: 37454340 PMCID: PMC10449971 DOI: 10.1007/s00439-023-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
CHAMP1 disorder is a genetic neurodevelopmental condition caused by mutations in the CHAMP1 gene that result in premature termination codons. The disorder is associated with intellectual disability, medical comorbidities, and dysmorphic features. Deletions of the CHAMP1 gene, as part of 13q34 deletion syndrome, have been briefly described with the suggestion of a milder clinical phenotype. To date, no studies have directly assessed differences between individuals with mutations in CHAMP1 to those with deletions of the gene. We completed prospective clinical evaluations of 16 individuals with mutations and eight with deletions in CHAMP1. Analyses revealed significantly lower adaptive functioning across all domains assessed (i.e., communication, daily living skills, socialization, and motor skills) in the mutation group. Developmental milestones and medical features further showed difference between groups. The phenotypes associated with mutations, as compared to deletions, indicate likely difference in pathogenesis between groups, where deletions are acting through CHAMP1 haploinsufficiency and mutations are acting through dominant negative or gain of function mechanisms, leading to a more severe clinical phenotype. Understanding this pathogenesis is important to the future of novel therapies for CHAMP1 disorder and illustrates that mechanistic understanding of mutations must be carefully considered prior to treatment development.
Collapse
Affiliation(s)
- Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thariana Pichardo
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hailey Silver
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bonnie Lerman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Faria JAD, Moraes DR, Kulikowski LD, Batista RL, Gomes NL, Nishi MY, Zanardo E, Nonaka CKV, de Freitas Souza BS, Mendonca BB, Domenice S. Cytogenomic Investigation of Syndromic Brazilian Patients with Differences of Sexual Development. Diagnostics (Basel) 2023; 13:2235. [PMID: 37443631 DOI: 10.3390/diagnostics13132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Cytogenomic methods have gained space in the clinical investigation of patients with disorders/differences in sexual development (DSD). Here we evaluated the role of the SNP array in achieving a molecular diagnosis in Brazilian patients with syndromic DSD of unknown etiology. METHODS Twenty-two patients with DSD and syndromic features were included in the study and underwent SNP-array analysis. RESULTS In two patients, the diagnosis of 46,XX SRY + DSD was established. Additionally, two deletions were revealed (3q29 and Xp22.33), justifying the syndromic phenotype in these patients. Two pathogenic CNVs, a 10q25.3-q26.2 and a 13q33.1 deletion encompassing the FGFR2 and the EFNB2 gene, were associated with genital atypia and syndromic characteristics in two patients with 46,XY DSD. In a third 46,XY DSD patient, we identified a duplication in the 14q11.2-q12 region of 6.5 Mb associated with a deletion in the 21p11.2-q21.3 region of 12.7 Mb. In a 46,XY DSD patient with delayed neuropsychomotor development and congenital cataracts, a 12 Kb deletion on chromosome 10 was found, partially clarifying the syndromic phenotype, but not the genital atypia. CONCLUSIONS The SNP array is a useful tool for DSD patients, identifying the molecular etiology in 40% (2/5) of patients with 46,XX DSD and 17.6% (3/17) of patients with 46,XY DSD.
Collapse
Affiliation(s)
- José Antonio Diniz Faria
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-909, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Daniela R Moraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Leslie Domenici Kulikowski
- Laboratório de Citogenômica e Patologia Molecular LIM/03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Nathalia Lisboa Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Mirian Yumie Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Evelin Zanardo
- Laboratório de Citogenômica e Patologia Molecular LIM/03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Carolina Kymie Vasques Nonaka
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador 41253-190, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador 41253-190, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador 41253-190, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador 40296-710, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
5
|
Amenta S, Marangi G, Orteschi D, Frangella S, Gurrieri F, Paccagnella E, Scala M, Romano F, Capra V, Nigro V, Zollino M. CHAMP1-related disorders: pathomechanisms triggered by different genomic alterations define distinct nosological categories. Eur J Hum Genet 2023; 31:648-653. [PMID: 36797464 PMCID: PMC10250409 DOI: 10.1038/s41431-023-01305-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Loss-of-function variants in CHAMP1 were recently described as cause of a neurodevelopmental disorder characterized by intellectual disability (ID), autism, and distinctive facial characteristics. By exome sequencing (ES), we identified a truncating variant in CHAMP1, c.1858A > T (p.Lys620*), in a patient who exhibited a similar phenotype of severe ID and dysmorphisms. Whether haploinsufficiency or a dominant negative effect is the underlying pathomechanism in these cases is a question that still needs to be addressed. By array-CGH, we detected a 194 kb deletion in 13q34 encompassing CHAMP1, CDC16 and UPF3, in another patient who presented with borderline neurodevelopmental impairment and with no dysmorphisms. In a further patient suffering from early onset refractory seizures, we detected by ES a missense variant in CHAMP1, c.67 G > A (p.Gly23Ser). Genomic abnormalities were all de novo in our patients. We reviewed the clinical and the genetic data of patients reported in the literature with: loss-of-function variants in CHAMP1 (total 40); chromosome 13q34 deletions ranging from 1.1 to 4 Mb (total 7) and of the unique patient with a missense variant. We could infer that loss-of-function variants in CHAMP1 cause a homogeneous phenotype with severe ID, autism spectrum disorders (ASD) and highly distinctive facial characteristics through a dominant negative effect. CHAMP1 haploinsufficiency results in borderline ID with negligible consequences on the quality of life. Missense variants give rise to a severe epileptic encephalopathy through gain-of-function mechanism, most likely. We tentatively define for the first time distinct categories among the CHAMP1-related disorder on the basis of pathomechanisms.
Collapse
Affiliation(s)
- Simona Amenta
- Department of Biomedical Sciences, Clinical Genetics Service, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - Giuseppe Marangi
- Genomic Medicine, Policlinico Universitario "A. Gemelli" Foundation IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University, Rome, Italy
| | - Daniela Orteschi
- Genomic Medicine, Policlinico Universitario "A. Gemelli" Foundation IRCCS, Rome, Italy
| | - Silvia Frangella
- Genomic Medicine, Policlinico Universitario "A. Gemelli" Foundation IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University, Rome, Italy
| | - Fiorella Gurrieri
- Unit of Medical and Functional Genetics, University Campus Bio-Medico, Rome, Italy
| | - Elisa Paccagnella
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, Rome, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ferruccio Romano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Marcella Zollino
- Genomic Medicine, Policlinico Universitario "A. Gemelli" Foundation IRCCS, Rome, Italy.
- Department of Life Sciences and Public Health, Catholic University, Rome, Italy.
| |
Collapse
|
6
|
Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, Wanibuchi H, Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K. Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype. Brain Commun 2022; 4:fcac220. [PMID: 36106092 PMCID: PMC9465530 DOI: 10.1093/braincomms/fcac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
CHAMP1 is a gene associated with intellectual disability, which was originally identified as being involved in the maintenance of kinetochore–microtubule attachment. To explore the neuronal defects caused by CHAMP1 deficiency, we established mice that lack CHAMP1. Mice that are homozygous knockout for CHAMP1 were slightly smaller than wild-type mice and died soon after birth on pure C57BL/6J background. Although gross anatomical defects were not found in CHAMP1−/− mouse brains, mitotic cells were increased in the cerebral cortex. Neuronal differentiation was delayed in CHAMP1−/− neural stem cells in vitro, which was also suggested in vivo by CHAMP1 knockdown. In a behavioural test battery, adult CHAMP1 heterozygous knockout mice showed mild memory defects, altered social interaction, and depression-like behaviours. In transcriptomic analysis, genes related to neurotransmitter transport and neurodevelopmental disorder were downregulated in embryonic CHAMP1−/− brains. These results suggest that CHAMP1 plays a role in neuronal development, and CHAMP1-deficient mice resemble some aspects of individuals with CHAMP1 mutations.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Sharmin Naher
- Department of Developmental Neuroscience, Tohoku University Graduate School of Life Sciences , Sendai, Miyagi 980-8575 , Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute of Developmental Research, Aichi Developmental Disability Center , Kasugai, Aichi 480-0392 , Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine , Nagoya, Aichi 466-8550 , Japan
| | - Hayato Anzawa
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
| | - Risa Kugisaki
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine , Osaka 545-8585 , Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
- Division of Integrated Genomics, Tohoku Medical Megabank Organization, Tohoku University , Sendai, 980-8573 , Japan
- Department of In Silico Analysis, Institute of Development, Aging and Cancer, Tohoku University , Sendai, 980-8575 , Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| |
Collapse
|
7
|
Alhashem AM, Almohaid MS, Alanazi L, Alhabardi H. Intellectual Disability in Two Brothers Caused by De Novo Novel Unbalanced Translocation (13;18) (q34,q23) and De Novo Microdeletion 6q25 Syndrome. Cureus 2020; 12:e6778. [PMID: 32010537 PMCID: PMC6984774 DOI: 10.7759/cureus.6778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We report here two brothers with an intellectual disability (ID), dysmorphic features, speech delay, and congenital hypotonia, with chromosomal microarray confirmed. However, two different de novo chromosomal aberrations; unbalanced translocations (13;18) (q34,q23) were found in the elder boys and de novo 6q25 deletion in the second boy. The boy with 13q34 microdeletion and 18q23 microduplication suffered from ID, obesity, dysmorphic features, speech delay, and seizure while the one with 6q25 deletion presented with ID and speech delay. Both parents were tested and were normal. The third child had mild hypotonia at infancy, which improved later. Whole-exome sequencing (WES) showed the three boys carried a likely benign variant in MED12, inherited from the healthy, asymptomatic mother. The father suffered from rheumatoid arthritis and was on chemotherapy during the conception of the first two affected boys. This report places emphasis on the use of a chromosomal microarray in patients with ID, even with familial cases, and reports the paternal use of methotrexate.
Collapse
Affiliation(s)
- Amal M Alhashem
- Pediatrics / Medical Genetics, Prince Sultan Medical Military City, Riyadh, SAU
| | - Manal S Almohaid
- Pediatrics, Princess Nourah Bint Abdulrahman University, Riyadh, SAU
| | - Lina Alanazi
- Pediatrics, Princess Nourah Bint Abdulrahman University, Riyadh, SAU
| | - Hedayah Alhabardi
- Pediatrics, Princess Nourah Bint Abdulrahman University, Riyadh, SAU
| |
Collapse
|
8
|
Sagi-Dain L, Goldberg Y, Peleg A, Sukenik-Halevy R, Sofrin-Drucker E, Appelman Z, Josefsberg BYS, Ben-Shachar S, Vinkler C, Basel-Salmon L, Maya I. The rare 13q33-q34 microdeletions: eight new patients and review of the literature. Hum Genet 2019; 138:1145-1153. [PMID: 31321490 DOI: 10.1007/s00439-019-02048-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/12/2019] [Indexed: 11/26/2022]
Abstract
The objective of this study is to shed light on the phenotype and inheritance pattern of rare 13q33-q34 microdeletions. Appropriate cases were retrieved using local databases of two largest Israeli centers performing CMA analysis. In addition, literature search in PubMed, DECIPHER and ClinVar databases was performed. Local database search yielded eight new patients with 13q33.1-q34 microdeletions (three of which had additional copy number variants). Combined with 15 cases detected by literature search, an additional 23 cases were reported in DECIPHER database, and 17 cases from ClinVar, so overall 60 patients with isolated 13q33.1-q34 microdeletions were described. Developmental delay and/or intellectual disability were noted in the vast majority of affected individuals (81.7% = 49/60). Of the 23 deletions involving the 13q34 cytoband only, in 3 cases, developmental delay and/or intellectual disability was not reported. Interestingly, in two of these cases (66.7%), the deletions did not involve the terminal CHAMP1 gene, as opposed to 3/20 (15%) of patients with 13q34 deletions and neurocognitive disability. Facial dysmorphism and microcephaly were reported in about half of the overall cases, convulsions were noted in one-fifth of the patients, while heart anomalies, short stature and hypotonia each involved about 10-30% of the cases. None of the 13q33-q34 deletions were inherited from a reported healthy parent. 13q33-q34 microdeletions are rare chromosomal aberrations, associated with high risk for neurodevelopmental disability. The rarity of this chromosomal aberration necessitates continuous reporting and collection of available evidence, to improve the ability to provide accurate genetic counseling, especially in the context of prenatal setting.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, 7 Michal St, Haifa, Israel.
| | - Yael Goldberg
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Amir Peleg
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, 7 Michal St, Haifa, Israel
| | - Rivka Sukenik-Halevy
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
- Genetics Institute, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Sofrin-Drucker
- National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Zvi Appelman
- Department of Obstetrics and Gynecology, Kaplan Medical Center Rehovot (Affiliated with Hebrew University, Jerusalem), Rehovot, Israel
| | | | - Shay Ben-Shachar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Lina Basel-Salmon
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Maya
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
9
|
Kaseniit KE, Hogan GJ, D'Auria KM, Haverty C, Muzzey D. Strategies to minimize false positives and interpret novel microdeletions based on maternal copy-number variants in 87,000 noninvasive prenatal screens. BMC Med Genomics 2018; 11:90. [PMID: 30340588 PMCID: PMC6194617 DOI: 10.1186/s12920-018-0410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Noninvasive prenatal screening (NIPS) of common aneuploidies using cell-free DNA from maternal plasma is part of routine prenatal care and is widely used in both high-risk and low-risk patient populations. High specificity is needed for clinically acceptable positive predictive values. Maternal copy-number variants (mCNVs) have been reported as a source of false-positive aneuploidy results that compromises specificity. METHODS We surveyed the mCNV landscape in 87,255 patients undergoing NIPS. We evaluated both previously reported and novel algorithmic strategies for mitigating the effects of mCNVs on the screen's specificity. Further, we analyzed the frequency, length, and positional distribution of CNVs in our large dataset to investigate the curation of novel fetal microdeletions, which can be identified by NIPS but are challenging to interpret clinically. RESULTS mCNVs are common, with 65% of expecting mothers harboring an autosomal CNV spanning more than 200 kb, underscoring the need for robust NIPS analysis strategies. By analyzing empirical and simulated data, we found that general, outlier-robust strategies reduce the rate of mCNV-caused false positives but not as appreciably as algorithms specifically designed to account for mCNVs. We demonstrate that large-scale tabulation of CNVs identified via routine NIPS could be clinically useful: together with the gene density of a putative microdeletion region, we show that the region's relative tolerance to duplications versus deletions may aid the interpretation of microdeletion pathogenicity. CONCLUSIONS Our study thoroughly investigates a common source of NIPS false positives and demonstrates how to bypass its corrupting effects. Our findings offer insight into the interpretation of NIPS results and inform the design of NIPS algorithms suitable for use in screening in the general obstetric population.
Collapse
Affiliation(s)
- Kristjan Eerik Kaseniit
- Myriad Women's Health (previously Counsyl), 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Gregory J Hogan
- Myriad Women's Health (previously Counsyl), 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Kevin M D'Auria
- Myriad Women's Health (previously Counsyl), 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Carrie Haverty
- Myriad Women's Health (previously Counsyl), 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Dale Muzzey
- Myriad Women's Health (previously Counsyl), 180 Kimball Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Babaya N, Noso S, Hiromine Y, Ito H, Taketomo Y, Yamamoto T, Kawabata Y, Ikegami H. Early-Onset Diabetes Mellitus in a Patient With a Chromosome 13q34qter Microdeletion Including IRS2. J Endocr Soc 2018; 2:1207-1213. [PMID: 30302424 PMCID: PMC6169464 DOI: 10.1210/js.2018-00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus is a multifactorial disease caused by a complex interaction of environmental and genetic factors. Some diabetes mellitus cases, however, are caused by a limited number of mutant genes. Chromosome 13q deletion syndrome, an extremely rare genetic disorder, is caused by structural and functional monosomy of the 13q chromosomal region. We report the case of a 38-year-old Japanese man with Chr13q deletion (a mosaic pattern with heterozygous ring Chr13q) who developed diabetes mellitus. Early-onset diabetes mellitus developed in this patient because of insulin resistance and a lack of adequate insulin secretion. Microarray analysis identified a 4.8-Mb deletion of distal Chr13q, leading to a copy number loss of 40 genes. Among those genes, the insulin receptor substrate 2 gene (IRS2) was the most likely causative candidate for the development of diabetes mellitus in this patient, based on the model of IRS2 knockout mice, which have abnormal glucose and insulin homeostasis closely resembling the human diabetes phenotype. These data provide important information regarding the contribution of a microdeletion of Chr13q, including in IRS2, to the pathogenesis of diabetes mellitus in humans.
Collapse
Affiliation(s)
- Naru Babaya
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yoshihisa Hiromine
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Hiroyuki Ito
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yasunori Taketomo
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Shinjuku-ward, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Shinjuku-ward, Tokyo, Japan
| | - Yumiko Kawabata
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| |
Collapse
|
11
|
Orsini A, Bonuccelli A, Striano P, Azzara A, Costagliola G, Consolini R, Peroni DG, Valetto A, Bertini V. Generalized epilepsy and mild intellectual disability associated with 13q34 deletion: A potential role for SOX1 and ARHGEF7. Seizure 2018; 59:38-40. [PMID: 29734022 DOI: 10.1016/j.seizure.2018.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022] Open
Abstract
Terminal deletions of long arm of chromosome 13 are rare and poorly characterized by cytogenetic studies, making for difficult genotype-phenotype correlations. We report two siblings presenting generalized epilepsy, intellectual disability, and genitourinary tract defects. Array CGH detected a 1.3 Mb deletion at 13q34; it contains two protein-coding genes, SOX1 and ARHGEF7, whose haploinsufficiency can contribute to the epileptic phenotype.
Collapse
Affiliation(s)
- A Orsini
- U.O Pediatria, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy.
| | - A Bonuccelli
- U.O Pediatria, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - P Striano
- Neurologia Pediatrica e Malattie Muscolari, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Istituto 'G. Gaslini', Università di Genova, Italy
| | - A Azzara
- SOD Citogenetica, Azienda Ospedaliera Universitaria Pisana, Italy
| | - G Costagliola
- U.O Pediatria, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - R Consolini
- U.O Pediatria, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - D G Peroni
- U.O Pediatria, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - A Valetto
- SOD Citogenetica, Azienda Ospedaliera Universitaria Pisana, Italy
| | - V Bertini
- SOD Citogenetica, Azienda Ospedaliera Universitaria Pisana, Italy
| |
Collapse
|
12
|
D’Angelo CS, Varela MC, de Castro CIE, Otto PA, Perez ABA, Lourenço CM, Kim CA, Bertola DR, Kok F, Garcia-Alonso L, Koiffmann CP. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol Cytogenet 2018; 11:14. [PMID: 29441128 PMCID: PMC5800070 DOI: 10.1186/s13039-018-0363-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Syndromic obesity is an umbrella term used to describe cases where obesity occurs with additional phenotypes. It often arises as part of a distinct genetic syndrome with Prader-Willi syndrome being a classical example. These rare forms of obesity provide a unique source for identifying obesity-related genetic changes. Chromosomal microarray analysis (CMA) has allowed the characterization of new genetic forms of syndromic obesity, which are due to copy number variants (CNVs); however, CMA in large cohorts requires more study. The aim of this study was to characterize the CNVs detected by CMA in 279 patients with a syndromic obesity phenotype. RESULTS Pathogenic CNVs were detected in 61 patients (22%) and, among them, 35 had overlapping/recurrent CNVs. Genomic imbalance disorders known to cause syndromic obesity were found in 8.2% of cases, most commonly deletions of 1p36, 2q37 and 17p11.2 (5.4%), and we also detected deletions at 1p21.3, 2p25.3, 6q16, 9q34, 16p11.2 distal and proximal, as well as an unbalanced translocation resulting in duplication of the GNB3 gene responsible for a syndromic for of childhood obesity. Deletions of 9p terminal and 22q11.2 proximal/distal were found in 1% and 3% of cases, respectively. They thus emerge as being new putative obesity-susceptibility loci. We found additional CNVs in our study that overlapped with CNVs previously reported in cases of syndromic obesity, including a new case of 13q34 deletion (CHAMP1), bringing to 7 the number of patients in whom such defects have been described in association with obesity. Our findings implicate many genes previously associated with obesity (e.g. PTBP2, TMEM18, MYT1L, POU3F2, SIM1, SH2B1), and also identified other potentially relevant candidates including TAS1R3, ALOX5AP, and GAS6. CONCLUSION Understanding the genetics of obesity has proven difficult, and considerable insight has been obtained from the study of genomic disorders with obesity associated as part of the phenotype. In our study, CNVs known to be causal for syndromic obesity were detected in 8.2% of patients, but we provide evidence for a genetic basis of obesity in as many as 14% of cases. Overall, our results underscore the genetic heterogeneity in syndromic forms of obesity, which imposes a substantial challenge for diagnosis.
Collapse
Affiliation(s)
- Carla Sustek D’Angelo
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Monica Castro Varela
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Claudia Irene Emílio de Castro
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Paulo Alberto Otto
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP Brazil
| | - Charles Marques Lourenço
- Neurogenetics Unit, Clinics Hospital of Ribeirao Preto, Faculty of Medicine, University of Sao Paulo, FMRP-USP, Ribeirao Preto, SP Brazil
| | - Chong Ae Kim
- Genetic Unit, Children’s Institute, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Debora Romeo Bertola
- Genetic Unit, Children’s Institute, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Fernando Kok
- Department of Neurology, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Luis Garcia-Alonso
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP Brazil
| | - Celia Priszkulnik Koiffmann
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| |
Collapse
|
13
|
Affiliation(s)
- Vera Uliana
- Medical Genetics, Department of Clinical and Experimental Medicine, University Hospital of Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, Department of Clinical and Experimental Medicine, University Hospital of Parma, Italy.
| |
Collapse
|