1
|
Rudolph M, Wang Y, Simolka T, Huc-Claustre E, Dai L, Grotenbreg G, Besra GS, Shevchenko A, Shevchenko A, Zeissig S. Sortase A-Cleavable CD1d Identifies Sphingomyelins as Major Class of CD1d-Associated Lipids. Front Immunol 2022; 13:897873. [PMID: 35874748 PMCID: PMC9301999 DOI: 10.3389/fimmu.2022.897873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
CD1d is an atypical MHC class I molecule which binds endogenous and exogenous lipids and can activate natural killer T (NKT) cells through the presentation of lipid antigens. CD1d surveys different cellular compartments including the secretory and the endolysosomal pathway and broadly binds lipids through its two hydrophobic pockets. Purification of the transmembrane protein CD1d for the analysis of bound lipids is technically challenging as the use of detergents releases CD1d-bound lipids. To address these challenges, we have developed a novel approach based on Sortase A-dependent enzymatic release of CD1d at the cell surface of live mammalian cells, which allows for single step release and affinity tagging of CD1d for shotgun lipidomics. Using this system, we demonstrate that CD1d carrying the Sortase A recognition motif shows unimpaired subcellular trafficking through the secretory and endolysosomal pathway and is able to load lipids in these compartments and present them to NKT cells. Comprehensive shotgun lipidomics demonstrated that the spectrum and abundance of CD1d-associated lipids is not representative of the total cellular lipidome but rather characterized by preferential binding to long chain sphingolipids and glycerophospholipids. As such, sphingomyelin species recently identified as critical negative regulators of NKT cell activation, represented the vast majority of endogenous CD1d-associated lipids. Moreover, we observed that inhibition of endolysosomal trafficking of CD1d surprisingly did not affect the spectrum of CD1d-bound lipids, suggesting that the majority of endogenous CD1d-associated lipids load onto CD1d in the secretory rather than the endolysosomal pathway. In conclusion, we present a novel system for the analysis of CD1d-bound lipids in mammalian cells and provide new insight into the spectrum of CD1d-associated lipids, with important functional implications for NKT cell activation.
Collapse
Affiliation(s)
- Maren Rudolph
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Yuting Wang
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Theresa Simolka
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Emilie Huc-Claustre
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Lingyun Dai
- Department of Geriatrics, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, China
| | | | | | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- *Correspondence: Sebastian Zeissig,
| |
Collapse
|
2
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
3
|
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19:120. [PMID: 32762681 PMCID: PMC7409673 DOI: 10.1186/s12943-020-01238-x] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is highly complex, and immune escape is currently considered an important hallmark of cancer, largely contributing to tumor progression and metastasis. Named for their capability of killing target cells autonomously, natural killer (NK) cells serve as the main effector cells toward cancer in innate immunity and are highly heterogeneous in the microenvironment. Most current treatment options harnessing the tumor microenvironment focus on T cell-immunity, either by promoting activating signals or suppressing inhibitory ones. The limited success achieved by T cell immunotherapy highlights the importance of developing new-generation immunotherapeutics, for example utilizing previously ignored NK cells. Although tumors also evolve to resist NK cell-induced cytotoxicity, cytokine supplement, blockade of suppressive molecules and genetic engineering of NK cells may overcome such resistance with great promise in both solid and hematological malignancies. In this review, we summarized the fundamental characteristics and recent advances of NK cells within tumor immunometabolic microenvironment, and discussed potential application and limitations of emerging NK cell-based therapeutic strategies in the era of presicion medicine.
Collapse
Affiliation(s)
- Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Lukasik Z, Elewaut D, Venken K. MAIT Cells Come to the Rescue in Cancer Immunotherapy? Cancers (Basel) 2020; 12:cancers12020413. [PMID: 32053875 PMCID: PMC7072265 DOI: 10.3390/cancers12020413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Recent progress in immunobiology has led to the observation that, among cells classically categorized as the typical representatives of the adaptive immune system, i.e., T cells, some possess the phenotype of innate cells. Invariant T cells are characterized by T cell receptors recognizing a limited range of non-peptide antigens, presented only in the context of particular molecules. Mucosal-associated invariant T cells (MAIT cells) are an example of such unconventional cells. In humans, they constitute between 1% and 8% of the peripheral blood T lymphocytes and are further enriched in mucosal tissues, mesenteric lymph nodes, and liver, where they can account for even 40% of all the T cells. MAIT cells recognize antigens in the context of major histocompatibility complex class I-related protein (MR1). Upon activation, they instantly release pro-inflammatory cytokines and mediate cytolytic function towards bacterially infected cells. As such, they have been a rapidly evolving research topic not only in the field of infectious diseases but also in the context of many chronic inflammatory diseases and, more recently, in immuno-oncology. Novel findings suggest that MAIT cells function could also be modulated by endogenous ligands and drugs, making them an attractive target for therapeutic approaches. In this review, we summarize the current understanding of MAIT cell biology, their role in health and disease and discuss their future potential in cancer immunotherapy. This is discussed through the prism of knowledge and experiences with invariant natural killer T cells (iNKT)—another prominent unconventional T cell subset that shares many features with MAIT cells.
Collapse
Affiliation(s)
- Zuzanna Lukasik
- Department of Internal Medicine and Pediatrics (Rheumatology Unit), Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Pediatrics (Rheumatology Unit), Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Koen Venken
- Department of Internal Medicine and Pediatrics (Rheumatology Unit), Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent 9052, Belgium
- Correspondence:
| |
Collapse
|