1
|
Silverstein S, Cassini T, Fu J, Pusey B, Macnamara E, Frost FG, Williams C, Huang Y, Tifft CJ, Gahl W, Malicdan MC, Adams DR. RNA sequencing driven diagnosis expands the phenotypic spectrum of NBAS deficiency. Mol Genet Metab 2025; 145:109105. [PMID: 40215727 DOI: 10.1016/j.ymgme.2025.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
One in 10 individuals has a rare disease, with exome and genome sequencing yielding an overall diagnostic rate of approximately 30 %. RNA sequencing can augment genome analysis and improve diagnosis. We present a young woman with global developmental delay, poor growth, distinctive facial features, osteopenia, premature ovarian insufficiency, and ocular abnormalities who had non-diagnostic genome sequencing. RNAseq performed on her skin fibroblasts showed that NBAS gene expression was significantly reduced compared with controls. Manual inspection of the binary alignment map (BAM) files revealed compound heterozygous variants in NBAS: a rare deep intronic variant NM_015909.4:c.2423 + 403G > C which creates a hypomorphic pseudoexon not seen in control samples (gnomad allele frequency (AF) 0.000006572); and a rare premature termination codon (PTC) NM_015909.4:c.4753C > T; p.Arg1585Ter (gnomad AF 0.000006572). Both variants are predicted to cause nonsense mediated decay of transcripts, as the pseudoexon contains a PTC. Biallelic variants in NBAS are associated with two major phenotypes, i.e., infantile liver failure syndrome 2 (MIM # 616483) and short stature, optic nerve atrophy, and Pelger-Huet anomaly (MIM # 614800). Our patient, the first reported with one loss of function and one splice variant resulting in an out of frame transcript in NBAS, manifested a severe phenotype compared with previously reported individuals. This case demonstrates the utility of incorporating RNAseq to generate diagnostic candidates and expands the phenotypic spectrum of NBAS deficiency.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetics Disorder of Childhood Section, NINDS, NIH, Bethesda, MD, United States of America; Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America.
| | - Thomas Cassini
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America; Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jiayu Fu
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America
| | - Barbara Pusey
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America
| | - Ellen Macnamara
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America
| | - F Graeme Frost
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America
| | - Charlotte Williams
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America
| | - Yan Huang
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America
| | - Cynthia J Tifft
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, United States of America
| | - William Gahl
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, United States of America
| | | | - David R Adams
- Undiagnosed Disease Program, NHGRI, NIH, Bethesda, MD, United States of America; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
2
|
Sullivan PJ, Quinn JMW, Ajuyah P, Pinese M, Davis RL, Cowley MJ. Data-driven insights to inform splice-altering variant assessment. Am J Hum Genet 2025; 112:764-778. [PMID: 40056912 DOI: 10.1016/j.ajhg.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/06/2025] Open
Abstract
Disease-causing genetic variants often disrupt mRNA splicing, an intricate process that is incompletely understood. Thus, accurate inference of which genetic variants will affect splicing and what their functional consequences will be is challenging, particularly for variants outside of the essential splice sites. Here, we describe a set of data-driven heuristics that inform the interpretation of human splice-altering variants (SAVs) based on the analysis of annotated exons, experimentally validated SAVs, and the currently understood principles of splicing biology. We defined requisite splicing criteria by examining around 202,000 canonical protein-coding exons and 19,000 experimentally validated splicing branchpoints. This analysis defined the sequence, spacing, and motif strength required for splicing, with 95.9% of the exons examined meeting these criteria. By considering over 12,000 experimentally validated variants from the SpliceVarDB, we defined a set of heuristics that inform the evaluation of putative SAVs. To ensure the applicability of each heuristic, only those supported by at least 10 experimentally validated variants were considered. This allowed us to establish a measure of spliceogenicity: the proportion of variants at a location (or motif site) that affected splicing in a given context. This study makes considerable advances toward bridging the gap between computational predictions and the biological process of splicing, offering an evidence-based approach to identifying SAVs and evaluating their impact. Our splicing heuristics enhance the current framework for genetic variant evaluation with a robust, detailed, and comprehensible analysis by adding valuable context over traditional binary prediction tools.
Collapse
Affiliation(s)
- Patricia J Sullivan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Pamela Ajuyah
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ryan L Davis
- Neurogenetics Research Group, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Akesson LS, Rius R, Brown NJ, Rosenbaum J, Donoghue S, Stormon M, Chai C, Bordador E, Guo Y, Hakonarson H, Compton AG, Thorburn DR, Amarasekera S, Marum J, Monaco A, Lee C, Chong B, Lunke S, Stark Z, Christodoulou J. Distinct diagnostic trajectories in NBAS-associated acute liver failure highlights the need for timely functional studies. JIMD Rep 2022; 63:240-249. [PMID: 35433172 PMCID: PMC8995841 DOI: 10.1002/jmd2.12280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Variants of uncertain significance (VUS) are commonly found following genomic sequencing, particularly in ethnically diverse populations that are underrepresented in large population databases. Functional characterization of VUS may assist in variant reclassification, however these studies are not readily available and often rely on research funding and good will. We present four individuals from three families at different stages of their diagnostic trajectory with recurrent acute liver failure (RALF) and biallelic NBAS variants, confirmed by either trio analysis or cDNA studies. Functional characterization was undertaken, measuring NBAS and p31 levels by Western blotting, demonstrating reduced NBAS levels in two of three families, and reduced p31 levels in all three families. These results provided functional characterization of the molecular impact of a missense VUS, allowing reclassification of the variant and molecular confirmation of NBAS-associated RALF. Importantly, p31 was decreased in all individuals, including an individual with two missense variants where NBAS protein levels were preserved. These results highlight the importance of access to timely functional studies after identification of putative variants, and the importance of considering a range of assays to validate variants whose pathogenicity is uncertain. We suggest that funding models for genomic sequencing should consider incorporating capabilities for adjunct RNA, protein, biochemical, and other specialized tests to increase the diagnostic yield which will lead to improved medical care, increased equity, and access to molecular diagnoses for all patients.
Collapse
Affiliation(s)
- Lauren S. Akesson
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- SA PathologySA HealthAdelaideSAAustralia
- School of Biomedicine, Faculty of Medicine, Dentistry and Health SciencesUniversity of AdelaideAdelaideAustraliaAustralia
| | - Rocio Rius
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jeremy Rosenbaum
- Department of GastroenterologyRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Sarah Donoghue
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Michael Stormon
- Department of GastroenterologyChildren's Hospital WestmeadSydneyNew South WalesAustralia
- Discipline of Child & Adolescent Health, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Charmaine Chai
- Department of GastroenterologyChildren's Hospital WestmeadSydneyNew South WalesAustralia
| | - Esmeralda Bordador
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Yiran Guo
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Data‐Driven Discovery in BiomedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alison G. Compton
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - David R. Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Sumudu Amarasekera
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Alisha Monaco
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Crystle Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PathologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
- Discipline of Child & Adolescent Health, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Alanazi IO, Alamery SF, Ebrahimie E, Mohammadi-Dehcheshmeh M. Splice-disrupt genomic variants in prostate cancer. Mol Biol Rep 2022; 49:4237-4246. [PMID: 35286517 PMCID: PMC9262760 DOI: 10.1007/s11033-022-07257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Background Splice-disrupt genomic variants are one of the causes of cancer-causing errors in gene expression. Little is known about splice-disrupt genomic variants. Methods and results Here, pattern of splice-disrupt variants was investigated using 21,842,764 genomic variants in different types of prostate cancer. A particular attention was paid to genomic locations of splice-disrupt variants on target genes. HLA-A in prostate cancer, MSR1 in familial prostate cancer, and EGFR in both castration-resistant prostate cancer and metastatic castration-resistant had the highest allele frequencies of splice-disrupt variations. Some splice-disrupt variants, located on coding sequences of NCOR2, PTPRC, and CRP, were solely present in the advanced metastatic castration-resistant prostate cancer. High-risk splice-disrupt variants were identified based on computationally calculated Polymorphism Phenotyping (PolyPhen), Sorting Intolerant From Tolerant (SIFT), and Genomic Evolutionary Rate Profiling (GERP) + + scores as well as the recorded clinical significance in dbSNP database of NCBI. Functional annotation of damaging splice-disrupt variants highlighted important cancer-associated functions, including endocrine resistance, lipid metabolic process, steroid metabolic process, regulation of mitotic cell cycle, and regulation of metabolic process. This is the first study that profiles the splice-disrupt genomic variants and their target genes in prostate cancer. Literature mining based variant analysis highlighted the importance of rs1800716 variant, located on the CYP2D6 gene, involved in a range of important functions, such as RNA spicing, drug interaction, death, and urotoxicity. Conclusions This is the first study that profiles the splice-disrupt genomic variants and their target genes in different types of prostate cancer. Unravelling alternative splicing opens a new avenue towards the establishment of new diagnostic and prognostic markers for prostate cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07257-9.
Collapse
Affiliation(s)
- Ibrahim O. Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
| |
Collapse
|
5
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Petersen USS, Doktor TK, Andresen BS. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome. Hum Mutat 2021; 43:103-127. [PMID: 34837434 DOI: 10.1002/humu.24306] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Accuracy of pre-messenger RNA (pre-mRNA) splicing is crucial for normal gene expression. Complex regulation supports the spliceosomal distinction between authentic exons and the many seemingly functional splice sites delimiting pseudoexons. Pseudoexons are nonfunctional intronic sequences that can be activated for aberrant inclusion in mRNA, which may cause disease. Pseudoexon activation is very challenging to predict, in particular when activation occurs by sequence variants that alter the splicing regulatory environment without directly affecting splice sites. As pseudoexon inclusion often evades detection due to activation of nonsense-mediated mRNA decay, and because conventional diagnostic procedures miss deep intronic sequence variation, pseudoexon activation is a heavily underreported disease mechanism. Pseudoexon characteristics have mainly been studied based on in silico predicted sequences. Moreover, because recognition of sequence variants that create or strengthen splice sites is possible by comparison with well-established consensus sequences, this type of pseudoexon activation is by far the most frequently reported. Here we review all known human disease-associated pseudoexons that carry functional splice sites and are activated by deep intronic sequence variants located outside splice site sequences. We delineate common characteristics that make this type of wild type pseudoexons distinct high-risk sites in the human genome.
Collapse
Affiliation(s)
- Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
7
|
Rius R, Compton AG, Baker NL, Welch AE, Coman D, Kava MP, Minoche AE, Cowley MJ, Thorburn DR, Christodoulou J. Application of Genome Sequencing from Blood to Diagnose Mitochondrial Diseases. Genes (Basel) 2021; 12:genes12040607. [PMID: 33924034 PMCID: PMC8072654 DOI: 10.3390/genes12040607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial diseases can be caused by pathogenic variants in nuclear or mitochondrial DNA-encoded genes that often lead to multisystemic symptoms and can have any mode of inheritance. Using a single test, Genome Sequencing (GS) can effectively identify variants in both genomes, but it has not yet been universally used as a first-line approach to diagnosing mitochondrial diseases due to related costs and challenges in data analysis. In this article, we report three patients with mitochondrial disease molecularly diagnosed through GS performed on DNA extracted from blood to demonstrate different diagnostic advantages of this technology, including the detection of a low-level heteroplasmic pathogenic variant, an intragenic nuclear DNA deletion, and a large mtDNA deletion. Current technical improvements and cost reductions are likely to lead to an expanded routine diagnostic usage of GS and of the complementary “Omic” technologies in mitochondrial diseases.
Collapse
Affiliation(s)
- Rocio Rius
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alison G. Compton
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Naomi L. Baker
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
| | - AnneMarie E. Welch
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
| | - David Coman
- Department of Metabolic Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia;
- School of Clinical Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
| | - Maina P. Kava
- Department of Neurology, Perth Children’s Hospital, Perth, WA 6009, Australia;
- Department of Metabolic Medicine and Rheumatology, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Andre E. Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute, University of New South Wales, Randwick, NSW 2010, Australia;
| | - Mark J. Cowley
- Precision Medicine Theme, Children’s Cancer Institute, Kensington, NSW 2750, Australia;
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
- Correspondence: ; Tel.: +61-39936-6353
| |
Collapse
|
8
|
Ritelli M, Palagano E, Cinquina V, Beccagutti F, Chiarelli N, Strina D, Hall IF, Villa A, Sobacchi C, Colombi M. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency. Bone 2020; 140:115571. [PMID: 32768688 DOI: 10.1016/j.bone.2020.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Biallelic variants in neuroblastoma-amplified sequence (NBAS) cause an extremely broad spectrum of phenotypes. Clinical features range from isolated recurrent episodes of liver failure to multisystemic syndrome including short stature, skeletal osteopenia and dysplasia, optic atrophy, and a variable immunological, cutaneous, muscular, and neurological abnormalities. Hemizygous variants in CUL4B cause syndromic X-linked intellectual disability characterized by limitations in intellectual functions, developmental delays in gait, cognitive, and speech functioning, and other features including short stature, dysmorphism, and cerebral malformations. In this study, we report on a 4.5-month-old preterm infant with a complex phenotype mainly characterized by placental-related severe intrauterine growth restriction, post-natal growth failure with spontaneous bone fractures, which led to a suspicion of osteogenesis imperfecta, and lethal bronchopulmonary dysplasia with pulmonary hypertension. Whole exome sequencing identified compound heterozygosity for a known frameshift and a novel missense variant in NBAS and hemizygosity for a known CUL4B nonsense mutation. In vitro functional studies on the novel NBAS missense substitution demonstrated altered Golgi-to-endoplasmic reticulum retrograde vesicular trafficking and reduced collagen secretion, likely explaining part of the patient's phenotype. We also provided a comprehensive overview of the phenotypic features of NBAS and CUL4B deficiency, thus updating the recently emerging NBAS genotype-phenotype correlations. Our findings highlight the power of a genome-first approach for an early diagnosis of complex phenotypes.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Beccagutti
- Fondazione Poliambulanza, Department of Neonatal Intensive Care, 25124 Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | | | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
9
|
Li ZD, Abuduxikuer K, Zhang J, Yang Y, Qiu YL, Huang Y, Xie XB, Lu Y, Wang JS. NBAS disease: 14 new patients, a recurrent mutation, and genotype-phenotype correlation among 24 Chinese patients. Hepatol Res 2020; 50:1306-1315. [PMID: 32812336 DOI: 10.1111/hepr.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/12/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022]
Abstract
AIM Neuroblastoma amplified sequence (NBAS)-associated disease has a wide phenotypic spectrum, including infantile liver failure syndrome type 2 (ILFS2, OMIM #616483), short stature with optic nerve atrophy and Pelger-Huët anomaly (SOPH) syndrome (OMIM #614800), and a combined phenotype overlapping ILFS2 and SOPH syndrome. The mutation spectra of NBAS and its genotype-phenotype correlation among Chinese were not clear. METHODS Clinical and genetic data were retrospectively collected from the medical charts of patients with biallelic NBAS mutations, as well as from Chinese patients in previously published reports. RESULTS Fourteen new patients were identified, including 10 novel mutations: c.648-1G>A, c.2563_c.2577+5del/p.His855_Gln859del, c.3115C>T/p.Gln1039Ter, c.3284G>A/p.Trp1095Ter, c.2570C>T/p.Ala857Val, c.6859G>T/p.Asp2287Tyr, c.1028G>A/p.Ser343Asn, c.1177_1182delinsAGATAGA/p.Val393ArgfsTer2, c.3432_3435dupCAGT/p.Ala1146GlnfsTer14, and c.680_690dupACTGTTTCAGC/p.Phe231ThrfsTer35. All 14 patients presented as fever-triggered liver injury, including nine patients that satisfied the criteria of acute liver failure (ALF) in whom c.3596G>A/p.Cys1199Tyr occurred five times. Nine patients had extrahepatic manifestations including short stature, skeletal abnormalities, intellectual disability, ophthalmic abnormalities, low levels of serum immunoglobulins, facial dysmorphism, and cardiac abnormalities. Ten other Chinese patients were collected through a review of published works. Genotype-phenotype analysis in 24 Chinese patients revealed that the percentage of ALF patients with variants in the Sec39 domain was significantly higher than that in the C-terminal (100% vs. 12.5%, P = 0.000), and the percentage of multi-organ/system involvement in patients with variants in the Sec39 domain was significantly lower than that in the C-terminal (40% vs. 100%, P = 0.0128). CONCLUSIONS We reported 14 new patients, 10 novel mutations, and a unique recurrent mutation. Correlation analysis indicated that the domain of missense and non-frameshift insertion/deletion mutations in NBAS protein is related to phenotype among Chinese patients.
Collapse
Affiliation(s)
- Zhong Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuge Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
10
|
The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med 2020; 22:1254-1261. [DOI: 10.1038/s41436-020-0793-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
|
11
|
Lacassie Y, Johnson B, Lay-Son G, Quintana R, King A, Cortes F, Alvarez C, Gomez R, Vargas A, Chalew S, King A, Guardia S, Sorensen RU, Aradhya S. Severe SOPH syndrome due to a novel NBAS mutation in a 27-year-old woman-Review of this pleiotropic, autosomal recessive disorder: Mystery solved after two decades. Am J Med Genet A 2020; 182:1767-1775. [PMID: 32297715 DOI: 10.1002/ajmg.a.61597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Autosomal recessive SOPH syndrome was first described in the Yakuts population of Asia by Maksimova et al. in 2010. It arises from biallelic pathogenic variants in the NBAS gene and is characterized by severe postnatal growth retardation, senile facial appearance, small hands and feet, optic atrophy with loss of visual acuity and color vision, and normal intelligence (OMIM #614800). The presence of Pelger-Hüet anomaly in this disorder led to its name as an acronym for Short stature, Optic nerve atrophy, and Pelger-Hüet anomaly. Recent publications have further contributed to the characterization of this syndrome through additional phenotype-genotype correlations. We review the clinical features described in these publications and report on a 27-year-old woman with dwarfism with osteolysis and multiple skeletal problems, minor anomalies, immunodeficiency, diabetes mellitus, and multiple secondary medical problems. Her condition was considered an unknown autosomal recessive disorder for many years until exome sequencing provided the diagnosis by revealing a founder disease-causing variant that was compound heterozygous with a novel pathogenic variant in NBAS. Based on the major clinical features of this individual and others reported earlier, a revision of the acronym is warranted to facilitate clinical recognition.
Collapse
Affiliation(s)
- Yves Lacassie
- Department of Pediatrics, Division of Genetics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | | | - Guillermo Lay-Son
- Servicio de Genética, Clínica Alemana y División de Pediatría, Escuela de Medicina Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Andrew King
- Department of Orthopedics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Fanny Cortes
- Unidad de Genética, INTA, Universidad de Chile, Santiago, Chile
| | - Cecilia Alvarez
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ricardo Gomez
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Alfonso Vargas
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Stuart Chalew
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Alejandra King
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sylvia Guardia
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ricardo U Sorensen
- Department of Pediatrics, Division of Immunology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana and Honorary Professor Universidad de la Frontera, Temuco, Chile
| | | |
Collapse
|
12
|
Chavany J, Cano A, Roquelaure B, Bourgeois P, Boubnova J, Gaignard P, Hoebeke C, Reynaud R, Rhomer B, Slama A, Badens C, Chabrol B, Fabre A. Mutations in NBAS and SCYL1, genetic causes of recurrent liver failure in children: Three case reports and a literature review. Arch Pediatr 2020; 27:155-159. [DOI: 10.1016/j.arcped.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/15/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
|
13
|
Staufner C, Peters B, Wagner M, Alameer S, Barić I, Broué P, Bulut D, Church JA, Crushell E, Dalgıç B, Das AM, Dick A, Dikow N, Dionisi-Vici C, Distelmaier F, Bozbulut NE, Feillet F, Gonzales E, Hadzic N, Hauck F, Hegarty R, Hempel M, Herget T, Klein C, Konstantopoulou V, Kopajtich R, Kuster A, Laass MW, Lainka E, Larson-Nath C, Leibner A, Lurz E, Mayr JA, McKiernan P, Mention K, Moog U, Mungan NO, Riedhammer KM, Santer R, Palafoll IV, Vockley J, Westphal DS, Wiedemann A, Wortmann SB, Diwan GD, Russell RB, Prokisch H, Garbade SF, Kölker S, Hoffmann GF, Lenz D. Defining clinical subgroups and genotype–phenotype correlations in NBAS-associated disease across 110 patients. Genet Med 2019; 22:610-621. [DOI: 10.1038/s41436-019-0698-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
|