1
|
Kazan HH, Karaca M, Akan G, Özgen Ö, Tuncel G, Özketen AÇ, Balcı MC, Körbeyli HK, Atalar F, Gökçay GF. Oxford nanopore sequencing-based assay for BTD gene screening: Design, clinical validation, and variant frequency assessment in the Turkish population. Gene 2024; 928:148782. [PMID: 39033936 DOI: 10.1016/j.gene.2024.148782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Biotinidase deficiency (BTD) is an autosomal recessive disorder characterized by impaired recycling of the water-soluble vitamin biotin which leads to a spectrum of clinical manifestations ranging from mild to severe, including mainly neurological and cutaneous symptoms. Biotin supplementation is a cornerstone of treatment, but diagnosis often relies on measuring serum enzyme activity, which needs to be confirmed by genetic analysis. Thus, molecular methods become necessary in the differential diagnosis of BTD. Accordingly, countries with a high-incidence have implemented next-generation sequencing (NGS) techniques to newborn screening programs for BT. Nevertheless, NGS platforms, while well-established, present challenges in cost, labor, accessibility, and duration for newborn screening programs targeting BTD, therefore these limitations necessitate the exploration of alternative systems to ensure efficient and widespread screening. Here, third-generation sequencing platforms, notably Oxford Nanopore Technology (ONT), present promising solutions to the associated challenges. Hence, in the present study, we aimed to develop an ONT-based assay for the screening of BTD gene. After designing and optimizing primers for long-PCR using reference DNA, we assessed the performance of the ONT assay in BTD patients previously diagnosed by enzyme assay and confirmed using Illumina-based sequencing. The results demonstrate a strong correlation between the two methods, indicating the reliability of the ONT-based assay. Moreover, this first in-house single gene testing specifically tailored for BTD successfully detected previously known genetic variants with high sequencing depths, affirming the effectiveness of ONT-based sequencing in human genetics.
Collapse
Affiliation(s)
- Hasan Hüseyin Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Meryem Karaca
- Division of Pediatric Nutrition and Metabolism, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gökçe Akan
- DESAM Institute, Near East University, Mersin 10, Turkey
| | - Özge Özgen
- Rare Diseases Research Laboratory, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gülten Tuncel
- DESAM Institute, Near East University, Mersin 10, Turkey
| | | | - Mehmet Cihan Balcı
- Division of Pediatric Nutrition and Metabolism, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hüseyin Kutay Körbeyli
- Division of Pediatric Nutrition and Metabolism, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Fatmahan Atalar
- Rare Diseases Research Laboratory, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; Department of Rare Diseases, Child Health Institute, Istanbul University, Istanbul, Turkey.
| | - Gülden Fatma Gökçay
- Division of Pediatric Nutrition and Metabolism, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Sürücü Kara İ, Köse E, Koç Yekedüz M, Eminoğlu FT. A different approach to the evaluation of the genotype-phenotype relationship in biotinidase deficiency: repeated measurement of biotinidase enzyme activity. J Pediatr Endocrinol Metab 2023; 36:1061-1071. [PMID: 37725148 DOI: 10.1515/jpem-2023-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES In the present study, we aimed to evaluate the genotype-phenotype relation in patients with biotinidase enzyme deficiency based on repeated biotinidase enzyme measurements. METHODS The hospital file information of patients with biotinidase, enzyme deficiency was assessed retrospectively, and the relationship between the BTD gene mutations analysis results and biotinidase enzyme activity following the first and repeated enzyme activity assessments was analyzed. RESULTS One-hundred-ten patients were included. In the first enzyme evaluation, profound biotinidase enzyme deficiency was identified in 15 (13.6 %), partial biotinidase enzyme deficiency in 63 (57.3 %), and heterozygous biotinidase enzyme deficiency in 32 (29.1 %) of the patients. The BTD genetic analysis revealed 42 (38.2 %) homozygous, 42 (38.2 %) heterozygous, and 26 (23.6 %) compound heterozygous variants. The most common homozygous variant, p.Asp444His, was evaluated with 130 repeated enzyme measurements and was consistent with a partial biotinidase enzyme deficiency in 55.4 % of cases, heterozygous biotinidase enzyme deficiency in 43.8 % of cases, and profound biotinidase enzyme deficiency in one (0.8 %) case. Clinical symptoms developed in 17 patients during follow-up, of which 70.6 % were related to neurodevelopment. The most common variant was homozygous p.Asp444His (29.4 %) among the patients who developed symptoms. CONCLUSIONS This is the first study to date to evaluate the genotype-phenotype relationship in patients with biotinidase deficiency through repeated measurements of biotinidase enzyme activity. The study reveals that biotinidase enzyme activity alone is inadequate for diagnosing biotinidase enzyme deficiency or evaluating disease severity, as genetic investigations are also required for a definitive diagnosis of biotinidase enzyme deficiency.
Collapse
Affiliation(s)
- İlknur Sürücü Kara
- Department of Pediatric Metabolism, Ankara University, Faculty of Medicine, Ankara, Türkiye
| | - Engin Köse
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara University Rare Diseases Application and Research Center, Ankara, Türkiye
| | - Merve Koç Yekedüz
- Department of Pediatric Metabolism, Ankara University, Faculty of Medicine, Ankara, Türkiye
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara University Rare Diseases Application and Research Center, Ankara, Türkiye
| |
Collapse
|
3
|
Himmelreich N, Kikul F, Zdrazilova L, Honzik T, Hecker A, Poschet G, Lüchtenborg C, Brügger B, Strahl S, Bürger F, Okun JG, Hansikova H, Thiel C. Complex metabolic disharmony in PMM2-CDG paves the way to new therapeutic approaches. Mol Genet Metab 2023; 139:107610. [PMID: 37245379 DOI: 10.1016/j.ymgme.2023.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Frauke Kikul
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Lucie Zdrazilova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomáš Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Andreas Hecker
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Plant Molecular Biology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Christian Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Friederike Bürger
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, Department I, Heidelberg University, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Silva GCV, Borsatto T, Schwartz IVD, Sperb-Ludwig F. Characterization of the 3'UTR of the BTD gene and identification of regulatory elements and microRNAs. Genet Mol Biol 2022; 45:e20200432. [PMID: 35167647 PMCID: PMC8846296 DOI: 10.1590/1678-4685-gmb-2020-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/22/2021] [Indexed: 12/05/2022] Open
Abstract
Reduced biotinidase activity is associated with a spectrum of deficiency ranging
from total deficiency to heterozygous levels, a finding that is not always
explained by the pathogenic variants observed in the BTD gene.
The investigation of miRNAs, regulatory elements and variants in the 3’UTR
region may present relevance in understanding the genotype-phenotype
association. The aims of the study were to characterize the regulatory elements
of the 3’UTR of the BTD gene and identify variants and miRNAs
which may explain the discrepancies observed between genotype and biochemical
phenotype. We evaluated 92 individuals with reduced biotinidase activity (level
of heterozygotes = 33, borderline = 35, partial DB = 20 or total DB= 4) with
previously determined BTD genotype. The 3’UTR of the
BTD gene was Sanger sequenced. In silico
analysis was performed to identify miRNAs and regulatory elements. No variants
were found in the 3’UTR. We found 97 possible miRNAs associated with the
BTD gene, 49 predicted miRNAs involved in the alanine,
biotin, citrate and pyruvate metabolic pathways and 5 genes involved in biotin
metabolism. Six AU-rich elements were found. Our data suggest variants in the
3'UTR of BTD do not explain the genotype-phenotype
discrepancies found in Brazilian individuals with reduced biotinidase.
Collapse
Affiliation(s)
- Gerda Cristal Villalba Silva
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil
| | - Taciane Borsatto
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório BRAIN, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
The novel homozygous p.Asn197_Ser201del mutation in BTD gene is associated with profound biotinidase deficiency in an Iranian consanguineous family. Mol Biol Rep 2020; 47:4021-4027. [PMID: 32281057 DOI: 10.1007/s11033-020-05424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Biotinidase deficiency is an autosomal recessive inherited inborn error of biotin metabolism. Biotin as a water-soluble vitamin is the prosthetic group of biotin-dependent carboxylase enzymes, and by enhancing their function plays a key role in amino acid catabolism, fatty acid synthesis, and gluconeogenesis. Beyond its prosthetic group role, it has been recognized that biotin regulates the level of gene transcription in the eukaryotic cells, therefore any defect in these pathways causes a multisystem metabolic disorder characterized by neurological and cutaneous symptoms. METHODS AND RESULTS We report the identification of a novel pathogenic variant in the BTD gene, c.528_542del15 (p.Asn197_Ser201del, UniProt P43251-1) in an Iranian consanguineous family with a severe form of the disease. The segregation analysis in the family was consistent with phenotype and the identified variant was predicated as a pathogenic mutation by the in-silico prediction tools. Computer structural modeling suggests the deleted amino acid residues are located near the biotinidase active site and disrupt the special conformations which are critical for the enzyme activity, and also N-glycosylation. CONCLUSIONS This study further expands the mutation spectrum of the BTD gene underlying cause of profound biotinidase deficiency.
Collapse
|
6
|
Identification and Characterization of BTD Gene Mutations in Jordanian Children with Biotinidase Deficiency. J Pers Med 2020; 10:jpm10010004. [PMID: 31973013 PMCID: PMC7151559 DOI: 10.3390/jpm10010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/04/2022] Open
Abstract
Biotinidase deficiency is an autosomal recessive metabolic disorder whose diagnosis currently depends on clinical symptoms and a biotinidase enzyme assay. This study aimed to investigate the mutational status and enzymatic activity of biotinidase deficiency in seven unrelated Jordanian families including 10 patients and 17 healthy family members. Amplified DNA was analyzed by the automated Sanger sequencing method, and the enzymatic assay was performed using a colorimetric assessment. Biotinidase level was significantly lower (p < 0.001) in BTD children compare to their non-affected family members. Genetic sequencing revealed six different mutations in Jordanian patients. One mutation was novel and located in exon 4, which could be a prevalent mutation for biotinidase deficiency in the Jordanian population. Identification of these common mutations and combing the enzymatic activity with genotypic data will help clinicians with regard to better genetic counseling and management through implementing prevention programs in the future.
Collapse
|