1
|
Maclean KN, Jiang H, Neill PD, Chanin RR, Hurt KJ, Orlicky DJ, Bottiglieri T, Roede JR, Stabler SP. Dysregulation of hepatic one-carbon metabolism in classical homocystinuria: Implications of redox-sensitive DHFR repression and tetrahydrofolate depletion for pathogenesis and treatment. FASEB J 2024; 38:e23795. [PMID: 38984928 DOI: 10.1096/fj.202302585r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Philip D Neill
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan R Chanin
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - K Joseph Hurt
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Filip N, Cojocaru E, Badulescu OV, Clim A, Pinzariu AC, Bordeianu G, Jehac AE, Iancu CE, Filip C, Maranduca MA, Sova IA, Serban IL. SARS-CoV-2 Infection: What Is Currently Known about Homocysteine Involvement? Diagnostics (Basel) 2022; 13:10. [PMID: 36611302 PMCID: PMC9818222 DOI: 10.3390/diagnostics13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world causing health, social and economic instability. The severity and prognosis of patients with SARS-CoV-2 infection are associated with the presence of comorbidities such as cardiovascular disease, hypertension, chronic lung disease, cerebrovascular disease, diabetes, chronic kidney disease, and malignancy. Thrombosis is one of the most serious complications that can occur in patients with COVID-19. Homocysteine is a non-proteinogenic α-amino acid considered a potential marker of thrombotic diseases. Our review aims to provide an updated analysis of the data on the involvement of homocysteine in COVID-19 to highlight the correlation of this amino acid with disease severity and the possible mechanisms by which it intervenes.
Collapse
Affiliation(s)
- Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morpho-Functional Sciences (I), Discipline of Morphopathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Morpho-Functional Sciences (II), Discipline of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Elena Jehac
- Department of Dentoalveolar and Maxillofacial Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Elena Iancu
- Department of Biochemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristiana Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ivona Andreea Sova
- IOSUD Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Ventura P, Sardh E, Longo N, Balwani M, Plutzky J, Gouya L, Phillips J, Rhyee S, Fanelli MJ, Sweetser MT, Petrides PE. Hyperhomocysteinemia in acute hepatic porphyria (AHP) and implications for treatment with givosiran. Expert Rev Gastroenterol Hepatol 2022; 16:879-894. [PMID: 35929959 DOI: 10.1080/17474124.2022.2110469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Homocysteine is a sulfur-containing amino acid formed in the intermediary metabolism of methionine. Amino acid metabolism and heme biosynthesis pathways are complexly intertwined. Plasma homocysteine elevation, hyperhomocysteinemia (HHcy), has been reported in patients with acute hepatic porphyria (AHP), a family of rare genetic disorders caused by defects in hepatic heme biosynthesis. AREAS COVERED This article summarizes published case series in which givosiran, a subcutaneously administered small interfering RNA approved for AHP treatment, appeared to exacerbate dysregulated homocysteine metabolism in patients with AHP. A comprehensive exploratory analysis of ENVISION trial data demonstrated that on a population level, givosiran increased homocysteine but with wide interpatient variations, and there is no proof of correlations between HHcy and changes in efficacy or safety of givosiran. EXPERT OPINION The strong correlation and co-increase of homocysteine and methionine suggest that HHcy associated with givosiran is likely attributable to the impaired trans-sulfuration pathway catalyzed by cystathionine β-synthase, which uses vitamin B6 as a cofactor. Data-based consensus supports monitoring total plasma homocysteine and vitamin B6, B12, and folate levels before and during givosiran treatment; supplementing with pyridoxine/vitamin B6 in patients with homocysteine levels >100 μmol/L; and involving patients with homocysteine levels >30 μmol/L in decisions to supplement.
Collapse
Affiliation(s)
- Paolo Ventura
- Department of Surgical and Medical Sciences for Children and Adults, Internal Medicine Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Eliane Sardh
- Porphyria Centre Sweden, Centre for Inherited Metabolic Diseases, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nicola Longo
- Division of Medical Genetics, Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, UT, USA
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Plutzky
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John Phillips
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sean Rhyee
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | - Petro E Petrides
- EPNET Center Munich, Hematology Oncology Center, Ludwig Maximilians University (LMU) of Munich Medical School, Munich, Germany
| |
Collapse
|
4
|
Hoegen B, Hampstead JE, Engelke UF, Kulkarni P, Wevers RA, Brunner HG, Coene KLM, Gilissen C. Application of metabolite set enrichment analysis on untargeted metabolomics data prioritises relevant pathways and detects novel biomarkers for inherited metabolic disorders. J Inherit Metab Dis 2022; 45:682-695. [PMID: 35546254 PMCID: PMC9544878 DOI: 10.1002/jimd.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
Untargeted metabolomics (UM) allows for the simultaneous measurement of hundreds of metabolites in a single analytical run. The sheer amount of data generated in UM hampers its use in patient diagnostics because manual interpretation of all features is not feasible. Here, we describe the application of a pathway-based metabolite set enrichment analysis method to prioritise relevant biological pathways in UM data. We validate our method on a set of 55 patients with a diagnosed inherited metabolic disorder (IMD) and show that it complements feature-based prioritisation of biomarkers by placing the features in a biological context. In addition, we find that by taking enriched pathways shared across different IMDs, we can identify common drugs and compounds that could otherwise obscure genuine disease biomarkers in an enrichment method. Finally, we demonstrate the potential of this method to identify novel candidate biomarkers for known IMDs. Our results show the added value of pathway-based interpretation of UM data in IMD diagnostics context.
Collapse
Affiliation(s)
- Brechtje Hoegen
- Department of Human Genetics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Juliet E. Hampstead
- Department of Human Genetics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Udo F.H. Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Purva Kulkarni
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Ron A. Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Han G. Brunner
- Department of Human Genetics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, GROW School of Oncology and Development, MHENS School of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Karlien L. M. Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|