1
|
Filingeri D, Mackey S, Soller H, Guarneri-Tragone A, Cooper J, Escobar O, Bedoyan JK. A novel GK Ala469Val variant resulting in glycerol kinase deficiency with concurrent hepatoblastoma: A case report. Mol Genet Metab Rep 2024; 38:101058. [PMID: 38469098 PMCID: PMC10926216 DOI: 10.1016/j.ymgmr.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
Glycerol kinase deficiency (GKD) is a rare X-linked condition where glycerol cannot be phosphorylated to glycerol-3-phosphate, a key component of gluconeogenesis. Clinical presentation varies widely. We present a novel variant of the responsible GK in a patient with concurrent hepatoblastoma, whose course was complicated by hypoglycemia. Hepatoblastoma has not previously been described with GKD, highlighting the need for further research into GKD and its potential role in the pathogenesis of some forms of hepatoblastoma.
Collapse
Affiliation(s)
- Domenic Filingeri
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah Mackey
- Division of Hematology-Oncology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haley Soller
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alissa Guarneri-Tragone
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James Cooper
- Division of Hematology-Oncology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oscar Escobar
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jirair K. Bedoyan
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Ye C, Cheng F, Huang L, Wang K, Zhong L, Lu Y, Ouyang M. New plasma diagnostic markers for colorectal cancer: transporter fragments of glutamate tRNA origin. J Cancer 2024; 15:1299-1313. [PMID: 38356701 PMCID: PMC10861818 DOI: 10.7150/jca.92102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Early diagnosis of the disease can greatly improve the clinical prognosis for patients with CRC. Unfortunately, there are no current simple and effective early diagnostic markers available. The transfer RNA (tRNA)-derived RNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs), which have been shown to play an important role in the development and prognosis of CRC. However, only a few studies on tRFs as early diagnostic markers in CRC have been conducted. In this study, previously ignored tRFs expression data were extracted from six paired small RNA sequencing data in the Sequence Read Archive (SRA) database using MINTmap. Three i-tRFs, derived from the tRNA that transports glutamate (i-tRF-Glu), were identified and used to construct a random forest diagnostic model. The model performance was evaluated using the receiver operating characteristic (ROC) curve and precision-recall (PR) curve. The area under the curves (AUC) for the ROC and PR was 0.941 and 0.944, respectively. We further verified the differences in expression of the these i-tRF-Glu in the tissue and plasma of both CRC patients and healthy subjects using quantitative real-time PCR (qRT-PCR). We found that the ROC-AUC of the three was greater than traditional plasma tumor markers such as CEA and CA199. Our bioinformatics analysis suggested that the these i-tRF-Glu are associated with cancer development and glutamate (Glu)-glutamine (Gln) metabolism. Overall, our study uncovered these i-tRF-Glu that have early diagnostic significance and therapeutic potential for CRC, this warrants further investigation into the diagnostic and therapeutic potential of these i-tRF-Glu in CRC.
Collapse
Affiliation(s)
- Changda Ye
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Fu Cheng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Luji Huang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yan Lu
- GCP Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| |
Collapse
|
3
|
Gurung S, Timmermand OV, Perocheau D, Gil-Martinez AL, Minnion M, Touramanidou L, Fang S, Messina M, Khalil Y, Spiewak J, Barber AR, Edwards RS, Pinto PL, Finn PF, Cavedon A, Siddiqui S, Rice L, Martini PGV, Ridout D, Heywood W, Hargreaves I, Heales S, Mills PB, Waddington SN, Gissen P, Eaton S, Ryten M, Feelisch M, Frassetto A, Witney TH, Baruteau J. mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria. Sci Transl Med 2024; 16:eadh1334. [PMID: 38198573 PMCID: PMC7615535 DOI: 10.1126/scitranslmed.adh1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/06/2023] [Indexed: 01/12/2024]
Abstract
The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.
Collapse
Affiliation(s)
- Sonam Gurung
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Dany Perocheau
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ana Luisa Gil-Martinez
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Loukia Touramanidou
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sherry Fang
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Martina Messina
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Youssef Khalil
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Justyna Spiewak
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Abigail R Barber
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Richard S Edwards
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Patricia Lipari Pinto
- Santa Maria's Hospital, Lisbon North University Hospital Center, 1649-028 Lisbon, Portugal
| | | | | | | | - Lisa Rice
- Moderna Inc., Cambridge, MA 02139, USA
| | | | - Deborah Ridout
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Wendy Heywood
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ian Hargreaves
- Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool L3 5UG, UK
| | - Simon Heales
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Philippa B Mills
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon N Waddington
- EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of Witswatersrand, Braamfontein, 2000 Johannesburg, South Africa
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | | | - Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Julien Baruteau
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
4
|
Gurung S, Karamched S, Perocheau D, Seunarine KK, Baldwin T, Alrashidi H, Touramanidou L, Duff C, Elkhateeb N, Stepien KM, Sharma R, Morris A, Hartley T, Crowther L, Grunewald S, Cleary M, Mundy H, Chakrapani A, Batzios S, Davison J, Footitt E, Tuschl K, Lachmann R, Murphy E, Santra S, Uudelepp ML, Yeo M, Finn PF, Cavedon A, Siddiqui S, Rice L, Martini PGV, Frassetto A, Heales S, Mills PB, Gissen P, Clayden JD, Clark CA, Eaton S, Kalber TL, Baruteau J. The incidence of movement disorder increases with age and contrasts with subtle and limited neuroimaging abnormalities in argininosuccinic aciduria. J Inherit Metab Dis 2023. [PMID: 38044746 DOI: 10.1002/jimd.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.
Collapse
Affiliation(s)
- Sonam Gurung
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Saketh Karamched
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Dany Perocheau
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Kiran K Seunarine
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tom Baldwin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Haya Alrashidi
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Loukia Touramanidou
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire Duff
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nour Elkhateeb
- Great Ormond Street Hospital for Children NHS Trust, London, UK
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Karolina M Stepien
- Mark Holland Metabolic Unit, Adult Inherited Metabolic Diseases Department, Salford Royal NHS Foundation Trust, Salford, UK
| | - Reena Sharma
- Mark Holland Metabolic Unit, Adult Inherited Metabolic Diseases Department, Salford Royal NHS Foundation Trust, Salford, UK
| | - Andrew Morris
- Willink Unit, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Thomas Hartley
- Willink Unit, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Laura Crowther
- Willink Unit, Manchester Centre for Genomic Medicine, Manchester, UK
| | | | - Maureen Cleary
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Helen Mundy
- Evelina London Children's Hospital, St Thomas's Hospital, London, UK
| | | | - Spyros Batzios
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - James Davison
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Emma Footitt
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Karin Tuschl
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Saikat Santra
- Clinical IMD, Birmingham Children's Hospital, Birmingham, UK
| | | | - Mildrid Yeo
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | | | | | - Lisa Rice
- Moderna, Inc., Cambridge, Massachusetts, USA
| | | | | | - Simon Heales
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Philippa B Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Jonathan D Clayden
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Julien Baruteau
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| |
Collapse
|
5
|
Yang G, Liu R, Rezaei S, Liu X, Wan YJY. Uncovering the Gut-Liver Axis Biomarkers for Predicting Metabolic Burden in Mice. Nutrients 2023; 15:3406. [PMID: 37571345 PMCID: PMC10421148 DOI: 10.3390/nu15153406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Western diet (WD) intake, aging, and inactivation of farnesoid X receptor (FXR) are risk factors for metabolic and chronic inflammation-related health issues ranging from metabolic dysfunction-associated steatotic liver disease (MASLD) to dementia. The progression of MASLD can be escalated when those risks are combined. Inactivation of FXR, the receptor for bile acid (BA), is cancer prone in both humans and mice. The current study used multi-omics including hepatic transcripts, liver, serum, and urine metabolites, hepatic BAs, as well as gut microbiota from mouse models to classify those risks using machine learning. A linear support vector machine with K-fold cross-validation was used for classification and feature selection. We have identified that increased urine sucrose alone achieved 91% accuracy in predicting WD intake. Hepatic lithocholic acid and serum pyruvate had 100% and 95% accuracy, respectively, to classify age. Urine metabolites (decreased creatinine and taurine as well as increased succinate) or increased gut bacteria (Dorea, Dehalobacterium, and Oscillospira) could predict FXR deactivation with greater than 90% accuracy. Human disease relevance is partly revealed using the metabolite-disease interaction network. Transcriptomics data were also compared with the human liver disease datasets. WD-reduced hepatic Cyp39a1 (cytochrome P450 family 39 subfamily a member 1) and increased Gramd1b (GRAM domain containing 1B) were also changed in human liver cancer and metabolic liver disease, respectively. Together, our data contribute to the identification of noninvasive biomarkers within the gut-liver axis to predict metabolic status.
Collapse
Affiliation(s)
- Guiyan Yang
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| | - Rex Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Shahbaz Rezaei
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Xin Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| |
Collapse
|
6
|
Activation of Granulocytes in Response to a High Protein Diet Leads to the Formation of Necrotic Lesions in the Liver. Metabolites 2023; 13:metabo13020153. [PMID: 36837771 PMCID: PMC9962952 DOI: 10.3390/metabo13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In their aspiration to become healthy, people are known to follow extreme diets. However, the acute impact on organs regulating systemic metabolism is not well characterized. Here, we investigated the acute impact of six extreme diets on the liver in mice. Most diets did not lead to clear pathology after short-term feeding. However, two weeks of feeding with a high protein diet (HPD) resulted in an acute increase of liver enzymes in the blood, indicative of liver damage. Histology revealed the formation of necrotic lesions in this organ which persisted for several weeks. Flow cytometric analysis of hepatic immune cell populations showed that HPD feeding induced activation of macrophages and neutrophils. Neutralization of the pro-inflammatory cytokine IL-1β or depletion of macrophages with clodronate-loaded liposomes or with genetic models did not ameliorate liver necrosis. In contrast, the depletion of neutrophils prevented HPD-induced hepatic inflammation. After prolonged feeding, HPD-feeding was associated with a strong increase of the cytokines IL-10 and IL-27, suggesting that anti-inflammatory mediators are activated to prevent nutrient-overload-induced damage to the liver. In summary, whereas our data indicates that most extreme diets do not have a major impact on the liver within two weeks, diets with a very high protein content may lead to severe, acute hepatic damage and should therefore be avoided.
Collapse
|
7
|
Kuchmerovska T, Yanitska L, Horkunenko O, Guzyk M, Tykhonenko T, Pryvrotska I. Nicotinamide prevention in diabetes-induced alterations in the rat liver. Endocr Regul 2023; 57:279-291. [PMID: 38127690 DOI: 10.2478/enr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective. The study was performed to elucidate whether nicotinamide (NAm) can attenuate the diabetes-induced liver damage by correction of ammonia detoxifying function and disbalance of NAD-dependent processes in diabetic rats. Methods. After four weeks of streptozotocin-induced diabetes, Wistar male rats were treated for two weeks with or without NAm. Urea concentration, arginase, and glutamine synthetase activities, NAD+ levels, and NAD+/NADH ratio were measured in cytosolic liver extracts. Expression of parp-1 gene in the liver was estimated by quantitative polymerase chain reaction and PARP-1 cleavage evaluated by Western blotting. Results. Despite the blood plasma lipid peroxidation products in diabetic rats were increased by 60%, the activity of superoxide dismutase (SOD) was reduced. NAm attenuated the oxidative stress, but did not affect the enzyme activity in diabetic rats. In liver of the diabetic rats, urea concentration and arginase activity were significantly higher than in the controls. The glutamine synthetase activity was decreased. Decline in NAD+ level and cytosolic NAD+/NADH ratio in the liver of diabetic rats was observed. Western blot analysis demonstrated a significant up-regulation of PARP-1 expression accompanied by the enzyme cleavage in the diabetic rat liver. However, no correlation was seen between mRNA expression of parp-1 gene and PARP-1 protein in the liver of diabetic rats. NAm markedly attenuated PARP-1 cleavage induced by diabetes, but did not affect the parp-1 gene expression. Conclusions. NAm counteracts diabetes-induced impairments in the rat liver through improvement of its detoxifying function, partial restoration of oxidative stress, NAD+ level, normalization of redox state of free cytosolic NAD+/NADH-couples, and prevention of PARP-1 cleavage.
Collapse
Affiliation(s)
- Tamara Kuchmerovska
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lesya Yanitska
- 2Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oksana Horkunenko
- 2Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykhailo Guzyk
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Tykhonenko
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Irina Pryvrotska
- 3Gorbachevsky Ternopil' State Medical University, Ministry of Public Health of Ukraine, Ternopil', Ukraine
| |
Collapse
|
8
|
Abstract
Respiratory syncytial virus (RSV) infection causes serious pulmonary disease and death in high-risk infants and elderly. Cadmium (Cd) is a toxic environmental metal contaminant and constantly exposed to humans. Limited information is available on Cd toxicity after early-life respiratory virus infection. In this study, we examined the effects of low-dose Cd exposure following early-life RSV infection on lung metabolism and inflammation using mouse and fibroblast culture models. C57BL/6J mice at 8 days old were exposed to RSV 2 times with a 4-week interval. A subset of RSV-infected mice was subsequently treated with Cd at a low dose in drinking water (RSV infection at infant age [RSVinf]+Cd) for 16 weeks. The results of inflammatory marker analysis showed that the levels of cytokines and chemokines were substantially higher in RSVinf+Cd group than other groups, implying that low-dose Cd following early-life RSV infection enhanced lung inflammation. Moreover, histopathology data showed that inflammatory cells and thickening of the alveolar walls as a profibrotic signature were evident in RSVinf+Cd. The metabolomics data revealed that RSVinf+Cd-caused metabolic disruption in histamine and histidine, vitamin D and urea cycle, and pyrimidine pathway accompanying with mechanistic target of rapamycin complex-1 activation. Taken together, our study demonstrates for the first time that cumulative Cd exposure following early-life RSV infection has a significant impact on subsequent inflammation and lung metabolism. Thus, early-life respiratory infection may reprogram metabolism and potentiate Cd toxicity, enhance inflammation, and cause fibrosis later in life.
Collapse
|