1
|
Sanabria-de la Torre R, Martínez-Heredia L, González-Salvatierra S, Andújar-Vera F, Iglesias-Baena I, Villa-Suárez JM, Contreras-Bolívar V, Corbacho-Soto M, Martínez-Navajas G, Real PJ, García-Fontana C, Muñoz-Torres M, García-Fontana B. Characterization of Genetic Variants of Uncertain Significance for the ALPL Gene in Patients With Adult Hypophosphatasia. Front Endocrinol (Lausanne) 2022; 13:863940. [PMID: 35498405 PMCID: PMC9047899 DOI: 10.3389/fendo.2022.863940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Hypophosphatasia (HPP) a rare disease caused by mutations in the ALPL gene encoding for the tissue-nonspecific alkaline phosphatase protein (TNSALP), has been identified as a potentially under-diagnosed condition worldwide which may have higher prevalence than currently established. This is largely due to the overlapping of its symptomatology with that of other more frequent pathologies. Although HPP is usually associated with deficient bone mineralization, the high genetic variability of ALPL results in high clinical heterogeneity, which makes it difficult to establish a specific HPP symptomatology. In the present study, three variants of ALPL gene with uncertain significance and no previously described (p.Del Glu23_Lys24, p.Pro292Leu and p.His379Asn) were identified in heterozygosis in patients diagnosed with HPP. These variants were characterized at phenotypic, functional and structural levels. All genetic variants showed significantly lower in vitro ALP activity than the wild-type (WT) genotype (p-value <0.001). Structurally, p.His379Asn variant resulted in the loss of two Zn2+ binding sites in the protein dimer which may greatly affect ALP activity. In summary, we identified three novel ALPL gene mutations associated with adult HPP. The correct identification and characterization of new variants and the subsequent study of their phenotype will allow the establishment of genotype-phenotype relationships that facilitate the management of the disease as well as making it possible to individualize treatment for each specific patient. This would allow the therapeutic approach to HPP to be personalized according to the unique genetic characteristics and clinical manifestations of each patient.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Luis Martínez-Heredia
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Sheila González-Salvatierra
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, Spain
| | | | - Juan Miguel Villa-Suárez
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Victoria Contreras-Bolívar
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | | | - Gonzalo Martínez-Navajas
- Gene Regulation, Stem Cells and Development Lab, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Pedro J. Real
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Gene Regulation, Stem Cells and Development Lab, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Cristina García-Fontana, ; Manuel Muñoz-Torres,
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Cristina García-Fontana, ; Manuel Muñoz-Torres,
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Abstract
Hypophosphatasia (HPP) is an inherited metabolic disease caused by loss-of-function mutations in the tissue non-specific alkaline phosphatase (TNAP) gene. Reduced activity of TNAP leads to the accumulation of its substrates, mainly inorganic pyrophosphate and pyridoxal-5′-phosphate, metabolic aberrations that largely explain the musculoskeletal and systemic features of the disease. More than 400 ALPL mutations, mostly missense, are reported to date, transmitted by either autosomal dominant or recessive mode. Severe disease is rare, with incidence ranging from 1:100,000 to 1:300,000 live births, while the estimated prevalence of the less severe adult form is estimated to be between 1:3100 to 1:508, in different countries in Europe. Presentation largely varies, ranging from death in utero to asymptomatic adults. In infants and children, clinical features include skeletal, respiratory and neurologic complications, while recurrent, poorly healing fractures, muscle weakness and arthropathy are common in adults. Persistently low serum alkaline phosphatase is the cardinal biochemical feature of the disease. Management requires a dedicated multidisciplinary team. In mild cases, treatment is usually symptomatic. Severe cases, with life-threating or debilitating complications, can be successfully treated with enzyme replacement therapy with asfotase alfa.
Collapse
|
3
|
Kinoshita Y, Mohamed FF, Amadeu de Oliveira F, Narisawa S, Miyake K, Foster BL, Millán JL. Gene Therapy Using Adeno-Associated Virus Serotype 8 Encoding TNAP-D 10 Improves the Skeletal and Dentoalveolar Phenotypes in Alpl -/- Mice. J Bone Miner Res 2021; 36:1835-1849. [PMID: 34076297 PMCID: PMC8446309 DOI: 10.1002/jbmr.4382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
Hypophosphatasia (HPP) is caused by loss-of-function mutations in the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP), whose deficiency results in the accumulation of extracellular inorganic pyrophosphate (PPi ), a potent mineralization inhibitor. Skeletal and dental hypomineralization characterizes HPP, with disease severity varying from life-threatening perinatal or infantile forms to milder forms that manifest in adulthood or only affect the dentition. Enzyme replacement therapy (ERT) using mineral-targeted recombinant TNAP (Strensiq/asfotase alfa) markedly improves the life span, skeletal phenotype, motor function, and quality of life of patients with HPP, though limitations of ERT include frequent injections due to a short elimination half-life of 2.28 days and injection site reactions. We tested the efficacy of a single intramuscular administration of adeno-associated virus 8 (AAV8) encoding TNAP-D10 to increase the life span and improve the skeletal and dentoalveolar phenotypes in TNAP knockout (Alpl-/- ) mice, a murine model for severe infantile HPP. Alpl-/- mice received 3 × 1011 vector genomes/body of AAV8-TNAP-D10 within 5 days postnatal (dpn). AAV8-TNAP-D10 elevated serum ALP activity and suppressed plasma PPi . Treatment extended life span of Alpl-/- mice, and no ectopic calcifications were observed in the kidneys, aorta, coronary arteries, or brain in the 70 dpn observational window. Treated Alpl-/- mice did not show signs of rickets, including bowing of long bones, enlargement of epiphyses, or fractures. Bone microstructure of treated Alpl-/- mice was similar to wild type, with a few persistent small cortical and trabecular defects. Histology showed no measurable osteoid accumulation but reduced bone volume fraction in treated Alpl-/- mice versus controls. Treated Alpl-/- mice featured normal molar and incisor dentoalveolar tissues, with the exceptions of slightly reduced molar enamel and alveolar bone density. Histology showed the presence of cementum and normal periodontal ligament attachment. These results support gene therapy as a promising alternative to ERT for the treatment of HPP. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yuka Kinoshita
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Flavia Amadeu de Oliveira
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|