1
|
Buonamassa R, Boscia G, Gaudiomonte M, Guerriero S, Fischetto R, Montepara A, Grassi MO, Pignataro MG, Puzo P, Giancipoli E, D’addario M, Alessio G, Boscia F, Viggiano P. Neurovascular retinal impairment in early-treated adults with phenylketonuria. Front Neurol 2024; 15:1305984. [PMID: 38974690 PMCID: PMC11225547 DOI: 10.3389/fneur.2024.1305984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose To compare radial peripapillary capillary (RPC) vascular plexus parameters and peripapillary retinal nerve fiber layer (pRNFL) thickness between Early-Treated Adults with Phenylketonuria (ETPKU) and controls. Methods This observational study was a monocentric, case control study including 36 eyes of 36 participants. Among these, 18 were early-treated PKU (ETPKU) and 18 were controls. A SD-OCTA (XR Avanti AngioVue OCTA; Optovue Inc., Fremont, CA) was employed to assess the OCT and OCTA parameters of all the participants. The main outcome measures were the RPC vessels density (VD) %, and the pRNFL thickness. Results The average pRNFL thickness was significantly reduced in ETPKU (110.78 ± 12.48 μm) compared to controls (113.22 ± 13.95 μm), p = 0.046. The mean VD% of the small vessels of the RPC plexus was 52.31 ± 2.2 in ETPKU and 50.71 ± 3.2 in controls (p = 0.049), while the VD% of all the radial peripapillary capillary plexus (RPCP) was 58.5 ± 2.2 in ETPKU and 55.08 ± 3.4 in controls (p < 0.001). By contrast, there were no differences in age, sex, and IOP between the two groups. Conclusion Through structural OCT and OCTA, we observed thinning of the nerve fibers accompanied by an increase in perfusion of the RPC plexus. Thus, our conclusions suggest that OCTA may serve as a noninvasive method to identify novel retinal biomarkers in ETPKU.
Collapse
Affiliation(s)
- Rosa Buonamassa
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Giacomo Boscia
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Marida Gaudiomonte
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Silvana Guerriero
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Rita Fischetto
- Metabolic Diseases and Clinical Genetics Unit, Department of Pediatric Medicine, Giovanni XXIII Children’s Hospital, Bari, Italy
| | - Alfonso Montepara
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Maria Oliva Grassi
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Maria Grazia Pignataro
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Pasquale Puzo
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Marina D’addario
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Giovanni Alessio
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Boscia
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| | - Pasquale Viggiano
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
2
|
Merkel M, Berg D, Brüggemann N, Classen J, Mainka T, Zittel S, Muntau AC. Characterisation and differential diagnosis of neurological complications in adults with phenylketonuria: literature review and expert opinion. J Neurol 2023; 270:3675-3687. [PMID: 37081197 PMCID: PMC10345006 DOI: 10.1007/s00415-023-11703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Phenylketonuria (PKU) is a rare inherited metabolic disorder characterised by elevated phenylalanine (Phe) concentrations that can exert neurotoxic effects if untreated or upon treatment discontinuation. This systematic review supported by expert opinion aims to raise awareness among the neurological community on neurological complications experienced by adults with PKU (AwPKU). METHODS The PubMed database was searched for articles on neurological signs and symptoms in AwPKU published before March 2022. In addition, two virtual advisory boards were held with a panel of seven neurologists and two metabolic physicians from Germany and Austria. Findings are supported by three illustrative patient cases. RESULTS Thirty-nine articles were included. Despite early diagnosis and treatment, neurological signs and symptoms (e.g. ataxia, brisk tendon reflexes, tremor, visual impairment) can emerge in adulthood, especially if treatment has been discontinued after childhood. In PKU, late-onset neurological deficits often co-occur with cognitive impairment and psychiatric symptoms, all of which can be completely or partially reversed through resumption of treatment. CONCLUSION Ideally, neurologists should be part of the PKU multidisciplinary team, either to bring lost to follow-up patients back to clinic or to manage symptoms in referred patients, considering that symptoms are often reversible upon regaining metabolic control. The current findings have been combined in a leaflet that will be disseminated among neurologists in Germany and Austria to create awareness.
Collapse
Affiliation(s)
- Martin Merkel
- Endokrinologikum Hamburg, Lornsenstraße 6, 22767, Hamburg, Germany.
- Asklepios Campus Hamburg, Semmelweis University, Hamburg, Germany.
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | | | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Tina Mainka
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Lotz-Havla AS, Katzdobler S, Nuscher B, Weiß K, Levin J, Havla J, Maier EM. Serum glial fibrillary acidic protein and neurofilament light chain in patients with early treated phenylketonuria. Front Neurol 2022; 13:1011470. [PMID: 36247773 PMCID: PMC9559705 DOI: 10.3389/fneur.2022.1011470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
To pave the way for healthy aging in early treated phenylketonuria (ETPKU) patients, a better understanding of the neurological course in this population is needed, requiring easy accessible biomarkers to monitor neurological disease progression in large cohorts. The objective of this pilot study was to investigate the potential of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as blood biomarkers to indicate changes of the central nervous system in ETPKU. In this single-center cross-sectional study, GFAP and NfL concentrations in serum were quantified using the Simoa® multiplex technology in 56 ETPKU patients aged 6–36 years and 16 age matched healthy controls. Correlation analysis and hierarchical linear regression analysis were performed to investigate an association with disease-related biochemical parameters and retinal layers assessed by optical coherence tomography. ETPKU patients did not show significantly higher GFAP concentrations (mean 73 pg/ml) compared to healthy controls (mean 60 pg/ml, p = 0.140). However, individual pediatric and adult ETPKU patients had GFAP concentrations above the healthy control range. In addition, there was a significant association of GFAP concentrations with current plasma tyrosine concentrations (r = −0.482, p = 0.036), a biochemical marker in phenylketonuria, and the retinal inner nuclear layer volume (r = 0.451, p = 0.04). There was no evidence of NfL alterations in our ETPKU cohort. These pilot results encourage multicenter longitudinal studies to further investigate serum GFAP as a complementary tool to better understand and monitor neurological disease progression in ETPKU. Follow-up investigations on aging ETPKU patients are required to elucidate the potential of serum NfL as biomarker.
Collapse
Affiliation(s)
- Amelie S. Lotz-Havla
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Brigitte Nuscher
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Weiß
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany
- *Correspondence: Joachim Havla
| | - Esther M. Maier
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Esther M. Maier
| |
Collapse
|
4
|
Dobrowolski SF, Phua YL, Vockley J, Goetzman E, Blair HC. Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity. Mol Genet Metab 2022; 136:111-117. [PMID: 35379539 PMCID: PMC9832337 DOI: 10.1016/j.ymgme.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/13/2023]
Abstract
Phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) is rightfully considered the paradigm treatable metabolic disease. Dietary substrate restriction (i.e. phenylalanine (Phe) restriction) was applied >60 years ago and remains the primary PKU management means. The traditional model of PKU neuropathophysiology dictates blood Phe over-representation directs asymmetric blood:brain barrier amino acid transport through the LAT1 transporter with subsequent increased cerebral Phe concentration and low concentrations of tyrosine (Tyr), tryptophan (Trp), leucine (Leu), valine (Val), and isoleucine (Ile). Low Tyr and Trp concentrations generate secondary serotonergic and dopaminergic neurotransmitter paucities, widely attributed as drivers of PKU neurologic phenotypes. White matter disease, a central PKU characteristic, is ascribed to Phe-mediated tissue toxicity. Impaired cerebral protein synthesis, by reduced concentrations of non-Phe large neutral amino acids, is another cited pathological mechanism. The PKU amino acid transport model suggests Phe management should be more efficacious than is realized, as even early identified, continuously treated patients that retain therapy compliance into adulthood, demonstrate neurologic disease elements. Reduced cerebral metabolism was an early-recognized element of PKU pathology. Legacy data (late 1960's to mid-1970's) determined the Phe catabolite phenylpyruvate inhibits mitochondrial pyruvate transport. Respirometry of Pahenu2 cerebral mitochondria have attenuated respiratory chain complex 1 induction in response to pyruvate substrate, indicating reduced energy metabolism. Oxidative stress is intrinsic to PKU and Pahenu2 brain tissue presents increased reactive oxygen species. Phenylpyruvate inhibits glucose-6-phosphate dehydrogenase that generates reduced niacinamide adenine dinucleotide phosphate the obligatory cofactor of glutathione reductase. Pahenu2 brain tissue metabolomics identified increased oxidized glutathione and glutathione disulfide. Over-represented glutathione disulfide argues for reduced glutathione reductase activity secondary to reduced NADPH. Herein, we review evidence of energy and oxidative stress involvement in PKU pathology. Data suggests energy deficit and oxidative stress are features of PKU pathophysiology, providing intervention-amenable therapeutic targets to ameliorate disease elements refractory to standard of care.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States of America.
| | - Yu Leng Phua
- Division of Medical Genetics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Jerry Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Eric Goetzman
- Division of Medical Genetics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Harry C Blair
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States of America; Veteran's Affairs Medical Center, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Lotz-Havla AS, Weiß K, Schiergens K, Regenauer-Vandewiele S, Parhofer KG, Christmann T, Böhm L, Havla J, Maier EM. Optical Coherence Tomography to Assess Neurodegeneration in Phenylalanine Hydroxylase Deficiency. Front Neurol 2021; 12:780624. [PMID: 34956063 PMCID: PMC8703042 DOI: 10.3389/fneur.2021.780624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
In phenylalanine hydroxylase (PAH) deficiency, an easily feasible method to access the progression of neurodegeneration is warranted to contribute to current discussions on treatment indications and targets. The objective of the present study was to investigate whether optical coherence tomography (OCT) measures as markers of neurodegeneration differ between patients with PAH deficiency and healthy controls (HCs) according to phenotype and metabolic control. In this single-center cross-sectional study, 92 patients with different phenotypes of PAH deficiency [PAH deficiency not requiring treatment, early treated phenylketonuria (ETPKU), and late-diagnosed phenylketonuria (PKU)] compared with 76 HCs were examined using spectral-domain OCT. Indices of phenylalanine elevation and variability were correlated with OCT parameters. Late-diagnosed PKU patients showed reduced peripapillary retinal nerve fiber layer (pRNFL) thickness and combined ganglion cell and inner plexiform layer (GCIPL) volume. Adult ETPKU patients were found to have lower GCIPL volume (p = 0.016), which correlated with the indices of phenylalanine control. In pediatric ETPKU patients with poor metabolic control, pRNFL was significantly reduced (p = 0.004). Patients with PAH deficiency not requiring treatment did not exhibit retinal degeneration. Inner nuclear layer (INL) was significantly increased in the pediatric ETPKU patients, driven by those with current poor metabolic control (p = 0.006). Our data provide evidence of retinal neuroaxonal degeneration and INL swelling, depending on the phenotype, current age, and metabolic control. These findings suggest that OCT is suitable to investigate neurodegeneration in PKU and we propose OCT as a sensitive, reliable, safe, low-burden, and low-cost examination for future multicenter studies.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Weiß
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Schiergens
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Klaus G Parhofer
- Medical Department IV - Grosshadern, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tara Christmann
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luise Böhm
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Data Integration for Future Medicine (DIFUTURE) Consortium, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Hopf S, Schuster AK, Hennermann JB, Pfeiffer N, Pitz S. Retinal thinning in phenylketonuria and Gaucher disease type 3. Graefes Arch Clin Exp Ophthalmol 2021; 260:1153-1160. [PMID: 34636993 PMCID: PMC8913472 DOI: 10.1007/s00417-021-05424-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Retinal alterations in inherited metabolic diseases associated with neurodegeneration are poorly studied. The objective was to study retinal thickness, specifically the components of the ganglion cell complex (GCC)-nerve fiber layer (NFL), ganglion cell layer (GCL), and inner plexiform layer (IPL)-using spectral-domain optical coherence tomography (SD-OCT) in two different diseases with potential dopaminergic depletion, phenylketonuria (PKU) and Gaucher disease type 3 (GD3). METHODS Retinal layers in 19 patients with PKU, 15 patients with GD3, and 93 healthy individuals were measured using peripapillary ring scan and macular SD-OCT. Linear mixed models were computed including an adjustment for age, sex, and spherical equivalent. We calculated Spearman's rank correlations between retinal layer measurements and clinical and/or laboratory parameters. RESULTS Thinning of total retinal thickness was found in the macular inner ring (p = 0.002), and outer ring (p = 0.012), sparing the fovea (p = 0.12) in PKU, while in GD3, all subfields were thinned (fovea p < 0.001, inner ring p = 0.047, outer ring 0.07). In both conditions, thinning was most evident in the NFL, GCL, and IPL, while OPL (outer plexiform layer) was thickened. Peripapillary retinal nerve fiber layer measurements remained normal. GCL and IPL in PKU correlated with tyrosine serum concentration. CONCLUSION Thinning of the NFL, GCL, and IPL, with thickened OPL, are both found in PKU and in GD3. Low dopamine concentrations in the retina might promote these effects. However, these data do not give evidence that retinal measurements can be used as a biomarker for disease severity in patients with GD3.
Collapse
Affiliation(s)
- Susanne Hopf
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Alexander K Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Susanne Pitz
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- Orbital Center, Ophthalmic Clinic, Bürgerhospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Dobrowolski SF, Tourkova IL, Sudano CR, Larrouture QC, Blair HC. A New View of Bone Loss in Phenylketonuria. Organogenesis 2021; 17:50-55. [PMID: 34432558 DOI: 10.1080/15476278.2021.1949865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Osteopenia is common in phenylalanine hydroxylase deficient phenylketonuria (PKU). PKU is managed by limiting dietary phenylalanine. Osteopenia in PKU might reflect a therapeutic diet, with reduced bone forming materials. However, osteopenia occurs in patients who never received dietary therapy or following short-term therapy. Humans and animal studies find no correlation between bone loss, plasma hyperphenylalaninemia, bone formation, and resorption markers. Work in the Pahenu2 mouse recently showed a mesenchymal stem cell (MSC) developmental defect in the osteoblast pathway. Specifically, Pahenu2 MSCs are affected by energy dysregulation and oxidative stress. In PKU, MSCs oximetry and respirometry show mitochondrial respiratory-chain complex 1 deficit and over-representation of superoxide, producing reactive oxygen species affecting mitochondrial function. Similar mechanisms are involved in aging bone and other rare defects including alkaptonuria and homocysteinemia. Novel interventions to support energy and reduce oxidative stress may restore bone formation PKU patients, and in metabolic diseases with related mechanisms.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Irina L Tourkova
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Veteran's Affairs Medical Center, Pittsburgh, PA, USA
| | - Cayla R Sudano
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Quitterie C Larrouture
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Veteran's Affairs Medical Center, Pittsburgh, PA, USA
| | - Harry C Blair
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Veteran's Affairs Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Reduced macular thickness and macular vessel density in early-treated adult patients with PKU. Mol Genet Metab Rep 2021; 27:100767. [PMID: 34026550 PMCID: PMC8121983 DOI: 10.1016/j.ymgmr.2021.100767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Macular structure is poorly evaluated in early-treated phenylketonuria (ETPKU). To evaluate potential changes, we aimed to examine retinas of PKU patients using optical coherence tomography (OCT) with additional OCT angiography (OCTA) and compare the results to healthy controls. Methods A total of 100 adults were recruited in this monocentric, case-control study: 50 patients with ETPKU (mean age: 30.66 ± 8.00 years) and 50 healthy controls (mean age: 30.45 ± 7.18 years). Macular thickness, vessel density and flow area of the right eye was assessed with spectral domain OCT angiography SD-OCT(A). Macular microstructural data between the ETPKU and control group was compared. In the ETPKU group, the relationship between visual functional parameters (best corrected visual acuity [VA], spherical equivalent [SE], contrast sensitivity [CS] and near stereoacuity) and microstructural alterations was examined. The dependency of OCT(A) values on serum phenylalanine (Phe) level was analysed. Results There was significant average parafoveal and perifoveal total retinal layer thinning in ETPKU patients compared to healthy controls (p < 0.016 and p < 0.001, respectively), while the foveal region remained unchanged in the ETPKU group. Whole macular and parafoveal superficial capillary plexus density was significantly decreased in ETPKU compared to controls (p < 0.001). There were no significant differences in the foveal avascular zone, nonflow area, macular superficial and deep capillary plexus between the groups. The temporal parafoveal inner retinal layer thickness was found to negatively correlate with individual Phe levels (r = -0.35, p = 0.042). There was no difference in vascular density and retinal thickness in the subgroup analysis of patients with good therapy adherence compared to patients on a relaxed diet. Conclusions Durable elevation in Phe levels are only partially associated with macular retinal structural changes. However, therapy adherence might not influence these ophthalmological complications.
Collapse
Key Words
- Dopamine
- Macular retinal vessel density
- Macular thickness
- Optical Coherence Tomography Angiography, (OCTA)
- Optical Coherence Tomography, (OCT)
- Optical coherence tomography angiography
- Parkinson's disease, (PD)
- Phenylalanine level
- Phenylalanine, (Phe)
- Phenylketonuria
- Tyrosine, (Tyr)
- aminoacid supplements, (AAS)
- axial length, (AL)
- contrast sensitivity, (CS)
- deep capillary plexus, (DCP)
- diopters, (D)
- dopamine, (DA)
- early treated phenylketonuria, (ETPKU)
- external limiting membrane/inner segment of photoreceptors/outer segment of photoreceptors, (ELM/IS/OS)
- ganglion cell complex, (GCC)
- ganglion cell layer, (GCL)
- inner limiting membrane, (ILM)
- inner nuclear layer, (INL)
- inner plexiform layer, (IPL)
- inner retinal layer, (IRL)
- intraocular pressure, (IOP)
- outer nuclear layer, (ONL)
- outer plexiform layer, (OPL)
- outer retinal layer, (ORL)
- phenylalanine hydroxylase gene, (PAH)
- phenylketonuria, (PKU)
- retinal nerve fiber layer, (RNFL)
- retinal pigment epithelium, (RPE)
- signal strength index, (SSI)
- sine-wave contrast test, (SWCT)
- spectral domain, (SD)
- spherical equivalent, (SE)
- split-spectrum amplitude-decorrelation angiography, (SSADA)
- superficial capillary plexus, (SCP)
- tetrahydrobiopterin, (BH4)
- total retinal layer thickness, (TRLT)
- vessel density, (VD)
- visual acuity, (VA)
- visual evoked potential, (VEP)
Collapse
|
9
|
Dobrowolski SF, Phua YL, Sudano C, Spridik K, Zinn PO, Wang Y, Bharathi S, Vockley J, Goetzman E. Phenylalanine hydroxylase deficient phenylketonuria comparative metabolomics identifies energy pathway disruption and oxidative stress. Mol Genet Metab 2021:S1096-7192(21)00686-7. [PMID: 33846068 DOI: 10.1016/j.ymgme.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). PAH deficiency leads to systemic hyperphenylalaninemia; however, the impact of Phe varies between tissues. To characterize tissue response to hyperphenylalaninemia, metabolomics was applied to tissue from therapy noncompliant classical PKU patients (blood, liver), the Pahenu2 classical PKU mouse (blood, liver, brain) and the PAH deficient pig (blood, liver, brain, cerebrospinal fluid). In blood, liver, and CSF from both patients and animal models over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of PKU brain tissue (mouse, pig) evidenced oxidative stress responses and energy dysregulation. In Pahenu2 and PKU pig brain tissues, anti-oxidative response by glutathione and homocarnosine is apparent. Oxidative stress in Pahenu2 brain was further demonstrated by increased reactive oxygen species. In Pahenu2 and PKU pig brain, an increased NADH/NAD ratio suggests a respiratory chain dysfunction. Respirometry in PKU brain mitochondria (mouse, pig) functionally confirmed reduced respiratory chain activity. Glycolysis pathway analytes are over-represented in PKU brain tissue (mouse, pig). PKU pathologies owe to liver metabolic deficiency; yet, PKU liver tissue (mouse, pig, human) shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States.
| | - Yu Leng Phua
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Cayla Sudano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Kayla Spridik
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Pascal O Zinn
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Yudong Wang
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Sivakama Bharathi
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Jerry Vockley
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Eric Goetzman
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| |
Collapse
|