1
|
Stankovic S, Lazic A, Parezanovic M, Stevanovic M, Pavlovic S, Stojiljkovic M, Klaassen K. Transcriptome Profiling of Phenylalanine-Treated Human Neuronal Model: Spotlight on Neurite Impairment and Synaptic Connectivity. Int J Mol Sci 2024; 25:10019. [PMID: 39337507 PMCID: PMC11431966 DOI: 10.3390/ijms251810019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Phenylketonuria (PKU) is the most common inherited disorder of amino acid metabolism, characterized by high levels of phenylalanine (Phe) in the blood and brain, leading to cognitive impairment without treatment. Nevertheless, Phe-mediated brain dysfunction is not fully understood. The objective of this study was to address gene expression alterations due to excessive Phe exposure in the human neuronal model and provide molecular advances in PKU pathophysiology. Hence, we performed NT2/D1 differentiation in culture, and, for the first time, we used Phe-treated NT2-derived neurons (NT2/N) as a novel model for Phe-mediated neuronal impairment. NT2/N were treated with 1.25 mM, 2.5 mM, 5 mM, 10 mM, and 30 mM Phe and subjected to whole-mRNA short-read sequencing. Differentially expressed genes (DEGs) were analyzed and enrichment analysis was performed. Under three different Phe concentrations (2.5 mM, 5 mM, and 10 mM), DEGs pointed to the PREX1, LRP4, CDC42BPG, GPR50, PRMT8, RASGRF2, and CDH6 genes, placing them in the context of PKU for the first time. Enriched processes included dendrite and axon impairment, synaptic transmission, and membrane assembly. In contrast to these groups, the 30 mM Phe treatment group clearly represented the neurotoxicity of Phe, exhibiting enrichment in apoptotic pathways. In conclusion, we established NT2/N as a novel model for Phe-mediated neuronal dysfunction and outlined the Phe-induced gene expression changes resulting in neurite impairment and altered synaptic connectivity.
Collapse
Affiliation(s)
- Sara Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| |
Collapse
|
2
|
Su Y, Wang Y, He J, Wang H, A X, Jiang H, Lu W, Zhou W, Li L. Development and validation of machine-learning models of diet management for hyperphenylalaninemia: a multicenter retrospective study. BMC Med 2024; 22:377. [PMID: 39256839 PMCID: PMC11388910 DOI: 10.1186/s12916-024-03602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Assessing dietary phenylalanine (Phe) tolerance is crucial for managing hyperphenylalaninemia (HPA) in children. However, traditionally, adjusting the diet requires significant time from clinicians and parents. This study aims to investigate the development of a machine-learning model that predicts a range of dietary Phe intake tolerance for children with HPA over 10 years following diagnosis. METHODS In this multicenter retrospective observational study, we collected the genotypes of phenylalanine hydroxylase (PAH), metabolic profiles at screening and diagnosis, and blood Phe concentrations corresponding to dietary Phe intake from over 10 years of follow-up data for 204 children with HPA. To incorporate genetic information, allelic phenotype value (APV) was input for 2965 missense variants in the PAH gene using a predicted APV (pAPV) model. This model was trained on known pheno-genotype relationships from the BioPKU database, utilizing 31 features. Subsequently, a multiclass classification model was constructed and trained on a dataset featuring metabolic data, genetic data, and follow-up data from 3177 events. The final model was fine-tuned using tenfold validation and validated against three independent datasets. RESULTS The pAPV model achieved a good predictive performance with root mean squared error (RMSE) of 1.53 and 2.38 on the training and test datasets, respectively. The variants that cause amino acid changes in the region of 200-300 of PAH tend to exhibit lower pAPV. The final model achieved a sensitivity range of 0.77 to 0.91 and a specificity range of 0.8 to 1 across all validation datasets. Additional assessment metrics including positive predictive value (0.68-1), negative predictive values (0.8-0.98), F1 score (0.71-0.92), and balanced accuracy (0.8-0.92) demonstrated the robust performance of our model. CONCLUSIONS Our model integrates metabolic and genetic information to accurately predict age-specific Phe tolerance, aiding in the precision management of patients with HPA. This study provides a potential framework that could be applied to other inborn errors of metabolism.
Collapse
Affiliation(s)
- Yajie Su
- Centre for Molecular Medicine, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Neonatology, Children's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hospital of Beijing Children's Hospital, Urumqi, China
| | - Yaqiong Wang
- Centre for Molecular Medicine, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinfeng He
- Department of Neonatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Huijun Wang
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Shanghai, China
| | - Xian A
- Department of Neonatology, Children's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hospital of Beijing Children's Hospital, Urumqi, China
| | - Haili Jiang
- Department of Neonatology, Children's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hospital of Beijing Children's Hospital, Urumqi, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Centre for Molecular Medicine, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Shanghai, China.
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Long Li
- Department of Neonatology, Children's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hospital of Beijing Children's Hospital, Urumqi, China.
| |
Collapse
|
3
|
Alavanda C, Ceylan Eİ, Kılavuz S, Çıkı K. Comprehensive analyses of phenylalanine hydroxylase variants and phenotypic characteristics of patients in the eastern region of Türkiye. J Pediatr Endocrinol Metab 2024; 37:543-552. [PMID: 38706300 DOI: 10.1515/jpem-2024-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES Phenylalanine hydroxylase (PAH) is predominantly a hepatic enzyme that catalyzes phenylalanine (Phe) into tyrosine, which is the rate-limiting step in Phe catabolism. Biallelic variants in the PAH gene cause PAH enzyme deficiency. Phenylketonuria (PKU) is an autosomal recessive disorder that causes neurologic, behavioral, and dermatological findings. PKU could be divided clinically into three types based on the blood Phe levels: classic phenylketonuria (cPKU), mild-moderate phenylketonuria (mPKU), and mild hyperphenylalaninemia (MHP). This study aimed to determine the phenotypic and genotypic characteristics of Turkish PKU patients in the eastern region of Türkiye. METHODS Demographic characteristics, serum Phe levels, treatments, and PAH variants of 163 patients with PKU and hyperphenylalaninemia (HPA) were retrospectively evaluated. Blood Phe levels of the patients were analyzed with the high-performance liquid chromatography method. For PAH gene analysis, next-generation sequencing was performed. RESULTS Of the 163 patients included in the study, 38 (23.3 %) had cPKU, 16 (9.8 %) had mPKU, and 109 (66.9 %) had MHP. Homozygous variants in the PAH gene were detected in 66 (40.5 %) of the patients, while compound heterozygous variants were detected in 97 (59.5 %) patients. Two novel and 35 recurrent variants in the PAH gene were detected. Of the two novel variants, one was missense (p.Phe351Leu) and the other was frameshift (p.Met276Cysfs*65). The most frequently detected variants were p.Thr380Met (18 %), p.Arg261Gln (16.8 %), and p.Ala300Ser (12.8 %). All patients with the homozygous c.1066-11G>A variant exhibited cPKU phenotype. The c.898G>T (p.Ala300Ser), c.1139C>T (p.Thr380Met), and c.1208C>T (p.Ala403Val) variants were statistically related to mild phenotype. On the other hand, c.592_613del (p.Tyr198Serfs*136), c.1028A>G (p.Tyr343Cys), and c.782G>A (p.Arg261Gln) variants were more frequently detected in the cPKU group. CONCLUSIONS Our study, conducted with patients from the eastern region of Türkiye, demonstrates the genetic heterogeneity in the Turkish population. Simultaneously, our research contributes to genotype-phenotype correlation and expands the genotypic spectrum by identifying novel variants.
Collapse
Affiliation(s)
- Ceren Alavanda
- Department of Medical Genetics, Van Research and Training Hospital, Van, Türkiye
| | - Emine İpek Ceylan
- Department of Medical Genetics, Van Research and Training Hospital, Van, Türkiye
- Department of Medical Genetics, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Ankara, Türkiye
| | - Sebile Kılavuz
- Division of Child Nutrition and Metabolism, Department of Pediatrics, School of Medicine, Marmara University, İstanbul, Türkiye
- Division of Child Nutrition and Metabolism, Department of Pediatrics, Van Research and Training Hospital, Van, Türkiye
| | - Kısmet Çıkı
- Division of Child Nutrition and Metabolism, Department of Pediatrics, Van Research and Training Hospital, Van, Türkiye
| |
Collapse
|
4
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Alghamdi MA, O'Donnell‐Luria A, Almontashiri NA, AlAali WY, Ali HH, Levy HL. Classical phenylketonuria presenting as maternal PKU syndrome in the offspring of an intellectually normal woman. JIMD Rep 2023; 64:312-316. [PMID: 37701331 PMCID: PMC10494492 DOI: 10.1002/jmd2.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of metabolism resulting from a deficiency of phenylalanine hydroxylase (PAH). If untreated by dietary restriction of phenylalanine intake, impaired postnatal cognitive development results from the neurotoxic effects of excessive phenylalanine (Phe). Signs and symptoms include severe intellectual disability and behavior problems with a high frequency of seizures and variable microcephaly. Maternal PKU syndrome refers to fetal damage resulting in congenital abnormalities when the mother has untreated PKU during pregnancy. Here, we report an intellectually normal 32-year-old female who presented with recurrent pregnancy loss and two neonatal deaths with congenital heart disease, microcephaly, intrauterine growth restriction, and respiratory distress. She was diagnosed with PKU through exome sequencing performed for carrier testing with a homozygous pathogenic variant in the PAH gene, c.169_171del, p.(Glu57del) that is associated with classical PKU. Consistent with the genetic finding, she had a markedly increased plasma phenylalanine concentration of 1642 μmol/L (normal <100). This case demonstrates that recurrent pregnancy loss due to untreated maternal PKU may present as an initial finding in otherwise unsuspected classical PKU and illustrates that extreme degrees of variable expressivity may occur in classical PKU. Moreover, this case illustrates the value of genomic sequencing of women who experience recurrent pregnancy loss or neonatal anomalies.
Collapse
Affiliation(s)
- Malak Ali Alghamdi
- Harvard Medical SchoolBostonMassachusettsUSA
- Medical Genetic Division, Pediatric DepartmentCollege of Medicine, King Saud UniversityRiyadhSaudi Arabia
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Anne O'Donnell‐Luria
- Harvard Medical SchoolBostonMassachusettsUSA
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusettsUSA
| | - Naif A. Almontashiri
- Center for Genetics and Inherited Diseases (CGID)Taibah UniversityMadinahSaudi Arabia
| | - Wajeih Y. AlAali
- Dr. Sulaiman Al Habib Medical GroupArryan HospitalRiyadhSaudi Arabia
| | - Hebatallah H. Ali
- Research Center, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Harvey L. Levy
- Harvard Medical SchoolBostonMassachusettsUSA
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| |
Collapse
|
6
|
Crosstalk between Glycogen-Selective Autophagy, Autophagy and Apoptosis as a Road towards Modifier Gene Discovery and New Therapeutic Strategies for Glycogen Storage Diseases. Life (Basel) 2022; 12:life12091396. [PMID: 36143432 PMCID: PMC9504455 DOI: 10.3390/life12091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen storage diseases (GSDs) are rare metabolic monogenic disorders characterized by an excessive accumulation of glycogen in the cell. However, monogenic disorders are not simple regarding genotype–phenotype correlation. Genes outside the major disease-causing locus could have modulatory effect on GSDs, and thus explain the genotype–phenotype inconsistencies observed in these patients. Nowadays, when the sequencing of all clinically relevant genes, whole human exomes, and even whole human genomes is fast, easily available and affordable, we have a scientific obligation to holistically analyze data and draw smarter connections between genotype and phenotype. Recently, the importance of glycogen-selective autophagy for the pathophysiology of disorders of glycogen metabolism have been described. Therefore, in this manuscript, we review the potential role of genes involved in glycogen-selective autophagy as modifiers of GSDs. Given the small number of genes associated with glycogen-selective autophagy, we also include genes, transcription factors, and non-coding RNAs involved in autophagy. A cross-link with apoptosis is addressed. All these genes could be analyzed in GSD patients with unusual discrepancies between genotype and phenotype in order to discover genetic variants potentially modifying their phenotype. The discovery of modifier genes related to glycogen-selective autophagy and autophagy will start a new chapter in understanding of GSDs and enable the usage of autophagy-inducing drugs for the treatment of this group of rare-disease patients.
Collapse
|
7
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
8
|
Elhawary NA, AlJahdali IA, Abumansour IS, Elhawary EN, Gaboon N, Dandini M, Madkhali A, Alosaimi W, Alzahrani A, Aljohani F, Melibary EM, Kensara OA. Genetic etiology and clinical challenges of phenylketonuria. Hum Genomics 2022; 16:22. [PMID: 35854334 PMCID: PMC9295449 DOI: 10.1186/s40246-022-00398-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
This review discusses the epidemiology, pathophysiology, genetic etiology, and management of phenylketonuria (PKU). PKU, an autosomal recessive disease, is an inborn error of phenylalanine (Phe) metabolism caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene. The prevalence of PKU varies widely among ethnicities and geographic regions, affecting approximately 1 in 24,000 individuals worldwide. Deficiency in the PAH enzyme or, in rare cases, the cofactor tetrahydrobiopterin results in high blood Phe concentrations, causing brain dysfunction. Untreated PKU, also known as PAH deficiency, results in severe and irreversible intellectual disability, epilepsy, behavioral disorders, and clinical features such as acquired microcephaly, seizures, psychological signs, and generalized hypopigmentation of skin (including hair and eyes). Severe phenotypes are classic PKU, and less severe forms of PAH deficiency are moderate PKU, mild PKU, mild hyperphenylalaninaemia (HPA), or benign HPA. Early diagnosis and intervention must start shortly after birth to prevent major cognitive and neurological effects. Dietary treatment, including natural protein restriction and Phe-free supplements, must be used to maintain blood Phe concentrations of 120-360 μmol/L throughout the life span. Additional treatments include the casein glycomacropeptide (GMP), which contains very limited aromatic amino acids and may improve immunological function, and large neutral amino acid (LNAA) supplementation to prevent plasma Phe transport into the brain. The synthetic BH4 analog, sapropterin hydrochloride (i.e., Kuvan®, BioMarin), is another potential treatment that activates residual PAH, thus decreasing Phe concentrations in the blood of PKU patients. Moreover, daily subcutaneous injection of pegylated Phe ammonia-lyase (i.e., pegvaliase; PALYNZIQ®, BioMarin) has promised gene therapy in recent clinical trials, and mRNA approaches are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Ezzeldin N. Elhawary
- Faculty of Medicine, MS Genomic Medicine Program, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nagwa Gaboon
- Department of Clinical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammed Dandini
- Department of Laboratory and Blood Bank, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Abdulelah Madkhali
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Abdulmajeed Alzahrani
- Department of Laboratory and Blood Bank at Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Fawzia Aljohani
- Department of Pediatric Clinics, Maternity and Children Hospital, King Salman Medical City, Madinah, Saudi Arabia
| | - Ehab M. Melibary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Jeddah, Saudi Arabia
- Department of Biochemistry, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|