1
|
Barchanska H, Płonka J, Nowak P, Kostina-Bednarz M. Metabolic profiles and fingerprints for the investigation of the influence of nitisinone on the metabolism of the yeast Saccharomyces cerevisiae. Sci Rep 2023; 13:1473. [PMID: 36702867 PMCID: PMC9879944 DOI: 10.1038/s41598-023-28335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Nitisinone (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione, NTBC) is considered a potentially effective drug for the treatment of various metabolic diseases associated with disorders of L-tyrosine metabolism however, side-effects impede its widespread use. This work aimed to broaden the knowledge of the influence of NTBC and its metabolites 2-amino-4-(trifluoromethyl)benzoic acid (ATFA), 2-nitro-4-(trifluoromethyl)benzoic acid (NTFA), and cyclohexane-1,3-dione (CHD) on the catabolism of L-tyrosine and other endogenous compounds in Saccharomyces cerevisiae. Based on a targeted analysis performed by LC-ESI-MS/MS, based on multiple reaction monitoring, it was found that the dissipation kinetics of the parent compound and its metabolites are compatible with a first-order reaction mechanism. Moreover, it has been proven that formed NTBC metabolites, such as CHD, cause a decrease in L-tyrosine, L-tryptophan, and L-phenylalanine concentrations by about 34%, 59% and 51%, respectively, compared to the untreated model organism. The overall changes in the metabolism of yeast exposed to NTBC or its derivatives were evaluated by non-targeted analysis via LC-ESI-MS/MS in the ion trap scanning mode. Based on principal components analysis, a statistically significant similarity between metabolic responses of yeast treated with ATFA or NTFA was observed. These findings facilitate further studies investigating the influence of NTBC on the human body and the mechanism of its action.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Paulina Nowak
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Marianna Kostina-Bednarz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
2
|
Bernini A, Spiga O, Santucci A. Structure-Function Relationship of Homogentisate 1,2-dioxygenase: Understanding the Genotype-Phenotype Correlations in the Rare Genetic Disease Alkaptonuria. Curr Protein Pept Sci 2023; 24:380-392. [PMID: 36880186 DOI: 10.2174/1389203724666230307104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 03/08/2023]
Abstract
Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs, which occurs because the homogentisate 1,2-dioxygenase (HGD) enzyme is not functional due to gene variants. Over time, HGA oxidation and accumulation cause the formation of the ochronotic pigment, a deposit that provokes tissue degeneration and organ malfunction. Here, we report a comprehensive review of the variants so far reported, the structural studies on the molecular consequences of protein stability and interaction, and molecular simulations for pharmacological chaperones as protein rescuers. Moreover, evidence accumulated so far in alkaptonuria research will be re-proposed as the bases for a precision medicine approach in a rare disease.
Collapse
Affiliation(s)
- Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
- Centro Regionale Medicina di Precisione, Siena, Italy
- ARTES 4.0, Pontedera, Italy
| |
Collapse
|
3
|
Grasso D, Geminiani M, Galderisi S, Iacomelli G, Peruzzi L, Marzocchi B, Santucci A, Bernini A. Untargeted NMR Metabolomics Reveals Alternative Biomarkers and Pathways in Alkaptonuria. Int J Mol Sci 2022; 23:ijms232415805. [PMID: 36555443 PMCID: PMC9779518 DOI: 10.3390/ijms232415805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.
Collapse
Affiliation(s)
- Daniela Grasso
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Gabriella Iacomelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Luana Peruzzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
- Centro Regionale Medicina di Precisione, 53100 Siena, Italy
- ARTES 4.0, 56025 Pontedera, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
4
|
Revisiting Quantification of Phenylalanine/Tyrosine Flux in the Ochronotic Pathway during Long-Term Nitisinone Treatment of Alkaptonuria. Metabolites 2022; 12:metabo12100920. [PMID: 36295821 PMCID: PMC9610527 DOI: 10.3390/metabo12100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in the phenylalanine (PHE)/tyrosine (TYR) pathway metabolites before and during homogentisic acid (HGA)-lowering by nitisinone in the Suitability of Nitisinone in Alkaptonuria (AKU) 2 (SONIA 2) study enabled the magnitude of the flux in the pathway to be examined. SONIA 2 was a 48-month randomised, open-label, evaluator-blinded, parallel-group study performed in the UK, France and Slovakia recruiting patients with confirmed AKU to receive either 10 mg nitisinone or no treatment. Site visits were performed at 3 months and yearly thereafter. Results from history, photographs of eyes/ears, whole body scintigraphy, echocardiography and abdomen/pelvis ultrasonography were combined to produce the Alkaptonuria Severity Score Index (cAKUSSI). PHE, TYR, hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and HGA metabolites were analysed by liquid chromatography/tandem mass spectrometry in 24 h urine and serum samples collected before and during nitisinone. Serum metabolites were corrected for total body water (TBW), and the sum of 24 h urine plus total body water metabolites of PHE, TYR, HPPA, HPLA and HGA were determined. The sum of urine metabolites (PHE, TYR, HPPA, HPLA and HGA) were similar pre- and peri-nitisinone. The sum of TBW metabolites and sum TBW + URINE metabolites were significantly higher peri-nitisinone (p < 0.001 for both) compared with pre-nitisinone baseline. Significantly higher concentrations of metabolites from the tyrosine metabolic pathway were observed during treatment with nitisinone. Arguments for unmasking of the ochronotic pathway and biliary elimination of HGA are put forward.
Collapse
|
5
|
Determinants of tyrosinaemia during nitisinone therapy in alkaptonuria. Sci Rep 2022; 12:16083. [PMID: 36167967 PMCID: PMC9515198 DOI: 10.1038/s41598-022-20424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Nitisinone (NIT) produces inevitable but varying degree of tyrosinaemia. However, the understanding of the dynamic adaptive relationships within the tyrosine catabolic pathway has not been investigated fully. The objective of the study was to assess the contribution of protein intake, serum NIT (sNIT) and tyrosine pathway metabolites to nitisinone-induced tyrosinaemia in alkaptonuria (AKU). Samples of serum and 24-h urine collected during SONIA 2 (Suitability Of Nitisinone In Alkaptonuria 2) at months 3 (V2), 12 (V3), 24 (V4), 36 (V5) and 48 (V6) were included in these analyses. Homogentisic acid (HGA), tyrosine (TYR), phenylalanine (PHE), hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and sNIT were analysed at all time-points in serum and urine. Total body water (TBW) metabolites were derived using 60% body weight. 24-h urine and TBW metabolites were summed to obtain combined values. All statistical analyses were post-hoc. 307 serum and 24-h urine sampling points were analysed. Serum TYR from V2 to V6, ranging from 478 to 1983 µmol/L were stratified (number of sampling points in brackets) into groups < 701 (47), 701–900 (105), 901–1100 (96) and > 1100 (59) µmol/L. The majority of sampling points had values greater than 900 µmol/L. sPHE increased with increasing sTYR (p < 0.001). Tyrosine, HPPA and HPLA in serum and TBW all increased with rising sTYR (p < 0.001), while HPLA/TYR ratio decreased (p < 0.0001). During NIT therapy, adaptive response to minimise TYR formation was demonstrated. Decreased conversion of HPPA to HPLA, relative to TYR, seems to be most influential in determining the degree of tyrosinaemia.
Collapse
|