1
|
Parenti G, Fecarotta S, Alagia M, Attaianese F, Verde A, Tarallo A, Gragnaniello V, Ziagaki A, Guimaraes MJ, Aguiar P, Hahn A, Azevedo O, Donati MA, Kiec-Wilk B, Scarpa M, van der Beek NAME, Del Toro Riera M, Germain DP, Huidekoper H, van den Hout JMP, van der Ploeg AT. The European reference network for metabolic diseases (MetabERN) clinical pathway recommendations for Pompe disease (acid maltase deficiency, glycogen storage disease type II). Orphanet J Rare Dis 2024; 19:408. [PMID: 39482698 PMCID: PMC11529438 DOI: 10.1186/s13023-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Clinical pathway recommendations (CPR) are based on existing guidelines and deliver a short overview on how to deal with a specific diagnosis, resulting therapy and follow-up. In this paper we propose a methodology for developing CPRs for Pompe disease, a metabolic myopathy caused by deficiency of lysosomal acid alpha-glucosidase. The CPR document was developed within the activities of the MetabERN, a non-profit European Reference Network for Metabolic Diseases established by the European Union. A working group was selected among members of the MetabERN lysosomal storage disease subnetwork, with specific expertise in the care of Pompe disease, and patient support group representatives. The working strategy was based on a systematic literature search to develop a database, followed by quality assessment of the studies selected from the literature, and by the development of the CPR document according to a matrix provided by MetabERN. Quality assessment of the literature and collection of citations was conducted according to the AGREE II criteria and Grading of Recommendations, Assessment, Development and Evaluation methodology. General aspects were addressed in the document, including pathophysiology, genetics, frequency, classification, manifestations and clinical approach, laboratory diagnosis and multidisciplinary evaluation, therapy and supportive measures, follow-up, monitoring, and pregnancy. The CPR document that was developed was intended to be a concise and easy-to-use tool for standardization of care for patients among the healthcare providers that are members of the network or are involved in the care for Pompe disease patients.
Collapse
Affiliation(s)
- Giancarlo Parenti
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy.
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy.
| | - Simona Fecarotta
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Marianna Alagia
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Federica Attaianese
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Alessandra Verde
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Antonietta Tarallo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Vincenza Gragnaniello
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Athanasia Ziagaki
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Endocrinology and Metabolism, Center of Excellence for Rare Metabolic Diseases in Adults, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Jose' Guimaraes
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Pneumology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Patricio Aguiar
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Clinica Universitaria de Medicina I, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Hahn
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Child Neurology, Justus-Liebig University, Giessen, Germany
| | - Olga Azevedo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Alice Donati
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Beata Kiec-Wilk
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Unit of Rare Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- The John Paul II Specjalist Hospital in Kraków, Kraków, Poland
| | - Maurizio Scarpa
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Nadine A M E van der Beek
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mireja Del Toro Riera
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic Unit, Department of Pediatric Neurology, Hospital Universitario Vall d'Hebron Barcelona, Barcelona, Spain
| | - Dominique P Germain
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Division of Medical Genetics, University of Versailles, Montigny, France
| | - Hidde Huidekoper
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
2
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Angelini C. Evaluating avalglucosidase alfa for the management of late-onset Pompe disease. Expert Rev Neurother 2024; 24:259-266. [PMID: 38261315 DOI: 10.1080/14737175.2024.2306855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Glycogenosis type II (GSDII) is a rare autosomal disorder that is caused by the deficiency of alpha-glucosidase, a lysosomal enzyme that hydrolyzes glycogen to glucose. Autophagy dysregulation plays a critical role. Importantly, since 2006, both patients with infantile (classic Pompe disease) and adult GSDII (late-onset Pompe disease or LOPD) have been treated with enzyme replacement therapy (ERT). To support this use, several double-blind and observational studies including large cohorts of GSDII patients have been undertaken and have shown ERT to be effective in modifying the natural course of disease. Indeed, most LOPD cases improve in the first 20 months of treatment in a six-minute walk test (6MWT), while those who are untreated do not; instead, their response declines over time. AREAS COVERED The author reviews avalglucosidase alpha, a therapy approved by both the FDA and European regulatory agencies. Herein, the author considers the pathophysiological approaches such as the role of enzyme entry, autophagy, and the response to ERT treatment of motor and respiratory components. EXPERT OPINION There has been a notable drive toward the research of various aspects of this disease regarding the role of new enzyme penetration and immune adverse events. Consequently, avalglucosidase alpha might be a further step forward.
Collapse
Affiliation(s)
- Corrado Angelini
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Colburn R, Lapidus D. An analysis of Pompe newborn screening data: a new prevalence at birth, insight and discussion. Front Pediatr 2024; 11:1221140. [PMID: 38274468 PMCID: PMC10810242 DOI: 10.3389/fped.2023.1221140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/10/2023] [Indexed: 01/27/2024] Open
Abstract
This study includes over 11.6M newborns screened (NBS) for Pompe Disease (PD) from 29 distinct universal screening programs across 8 countries and 4 continents. The birth prevalence of PD is 1:18,711, with no evidence of difference across populations of European, Latin American, or Asian ancestry, though differences may exist for PD subtypes. This study also compares these results, based on direct detection of disease and analyzed using a binomial method along with power analysis, with other methods for estimating the 'frequency' of rare genetic diseases (such as utilizing Hardy-Weinberg equilibrium on allele frequency and confidence interval analysis). This comparison demonstrates the implications of sample size and frames a discussion on its influence on the reliability of results when extrapolating to a population beyond the study dataset. Objectives Primary: Establish a new figure for prevalence at birth for Pompe disease by collecting and analyzing the largest relevant dataset to date and using that result to project population prevalence at birth in a novel way. Secondary: Compare these results to previous analyses to offer a framework for evaluating 'frequency' data that can be applied to other rare, genetic diseases, along with methods to assess quality of estimates.
Collapse
|
5
|
Pfrimmer C, Smitka M, Muschol N, Husain RA, Huemer M, Hennermann JB, Schuler R, Hahn A. Long-Term Outcome of Infantile Onset Pompe Disease Patients Treated with Enzyme Replacement Therapy - Data from a German-Austrian Cohort. J Neuromuscul Dis 2024; 11:167-177. [PMID: 38043017 PMCID: PMC10789365 DOI: 10.3233/jnd-230164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Enzyme replacement therapy (ERT) with recombinant human alglucosidase alfa (rhGAA) was approved in Europe in 2006. Nevertheless, data on the long-term outcome of infantile onset Pompe disease (IOPD) patients at school age is still limited. OBJECTIVE We analyzed in detail cardiac, respiratory, motor, and cognitive function of 15 German-speaking patients aged 7 and older who started ERT at a median age of 5 months. RESULTS Starting dose was 20 mg/kg biweekly in 12 patients, 20 mg/kg weekly in 2, and 40 mg/kg weekly in one patient. CRIM-status was positive in 13 patients (86.7%) and negative or unknown in one patient each (6.7%). Three patients (20%) received immunomodulation. Median age at last assessment was 9.1 (7.0-19.5) years. At last follow-up 1 patient (6.7%) had mild cardiac hypertrophy, 6 (42.9%) had cardiac arrhythmias, and 7 (46.7%) required assisted ventilation. Seven patients (46.7%) achieved the ability to walk independently and 5 (33.3%) were still ambulatory at last follow-up. Six patients (40%) were able to sit without support, while the remaining 4 (26.7%) were tetraplegic. Eleven patients underwent cognitive testing (Culture Fair Intelligence Test), while 4 were unable to meet the requirements for cognitive testing. Intelligence quotients (IQs) ranged from normal (IQ 117, 102, 96, 94) in 4 patients (36.4%) to mild developmental delay (IQ 81) in one patient (9.1%) to intellectual disability (IQ 69, 63, 61, 3x <55) in 6 patients (54.5%). White matter abnormalities were present in 10 out of 12 cerebral MRIs from 7 patients. CONCLUSION Substantial motor, cardiac, respiratory, and cognitive deficits are frequent in IOPD long-term survivors who started ERT before 2016. The findings of this study can be valuable as comparative data when evaluating the impact of newer treatment strategies including higher enzyme dosage, immunomodulation, modified enzymes, or early start of treatment following newborn screening.
Collapse
Affiliation(s)
- Charlotte Pfrimmer
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Martin Smitka
- Children’s Hospital, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ralf A. Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Martina Huemer
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria and Division of Metabolism, Children’s Research Center and University Children’s Hospital Zurich, Zurich, Switzerland
| | - Julia B. Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Rahel Schuler
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
6
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
7
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
8
|
De Filippi P, Errichiello E, Toscano A, Mongini T, Moggio M, Ravaglia S, Filosto M, Servidei S, Musumeci O, Giannini F, Piperno A, Siciliano G, Ricci G, Di Muzio A, Rigoldi M, Tonin P, Croce MG, Pegoraro E, Politano L, Maggi L, Telese R, Lerario A, Sancricca C, Vercelli L, Semplicini C, Pasanisi B, Bembi B, Dardis A, Palmieri I, Cereda C, Valente EM, Danesino C. Distribution of Exonic Variants in Glycogen Synthesis and Catabolism Genes in Late Onset Pompe Disease (LOPD). Curr Issues Mol Biol 2023; 45:2847-2860. [PMID: 37185710 PMCID: PMC10136686 DOI: 10.3390/cimb45040186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the GAA gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype–phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture. Genes encoding proteins involved in glycogen synthesis and catabolism may represent excellent candidates as phenotypic modifiers of PD. The genes analyzed for glycogen synthesis included UGP2, glycogenin (GYG1-muscle, GYG2, and other tissues), glycogen synthase (GYS1-muscle and GYS2-liver), GBE1, EPM2A, NHLRC1, GSK3A, and GSK3B. The only enzyme involved in glycogen catabolism in lysosomes is α-glucosidase, which is encoded by GAA, while two cytoplasmic enzymes, phosphorylase (PYGB-brain, PGL-liver, and PYGM-muscle) and glycogen debranching (AGL) are needed to obtain glucose 1-phosphate or free glucose. Here, we report the potentially relevant variants in genes related to glycogen synthesis and catabolism, identified by whole exome sequencing in a group of 30 patients with late-onset Pompe disease (LOPD). In our exploratory analysis, we observed a reduced number of variants in the genes expressed in muscles versus the genes expressed in other tissues, but we did not find a single variant that strongly affected the phenotype. From our work, it also appears that the current clinical scores used in LOPD do not describe muscle impairment with enough qualitative/quantitative details to correlate it with genes that, even with a slightly reduced function due to genetic variants, impact the phenotype.
Collapse
Affiliation(s)
| | - Edoardo Errichiello
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonio Toscano
- ERN-NMD Center of Messina for Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neuroscience RLM, University of Torino, 10126 Torino, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, BioBank of Skeletal Muscle, Peripheral Nerve, DNA and Dino Ferrari Center, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy
| | | | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, 25121 Brescia, Italy
| | | | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Fabio Giannini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, “Le Scotte” Hospital, 53100 Siena, Italy
| | - Alberto Piperno
- Fondazione IRCCS San Gerardo, Centro Ricerca Testamenti, Monza-European Reference Network–MetabERN, 20900 Monza, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, 56100 Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, 56100 Pisa, Italy
| | - Antonio Di Muzio
- Centre for Neuromuscular Disease, CeSI, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Miriam Rigoldi
- Dipartimento di Ricerca Malattie Rare, Istituto Mario Negri IRCCS, 24020 Ranica, Italy
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37100 Verona, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Luisa Politano
- Cardiomiologia e Genetica Medica, Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, 80100 Napoli, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20100 Milano, Italy
| | - Roberta Telese
- Centre for Neuromuscular Disease, CeSI, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Alberto Lerario
- Neuromuscular and Rare Diseases Unit, BioBank of Skeletal Muscle, Peripheral Nerve, DNA and Dino Ferrari Center, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy
| | | | - Liliana Vercelli
- Neuromuscular Unit, Department of Neuroscience RLM, University of Torino, 10126 Torino, Italy
| | | | - Barbara Pasanisi
- Cardiomiologia e Genetica Medica, Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, 80100 Napoli, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, University Hospital “Santa Maria della Misericordia”, 33100 Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital “Santa Maria della Misericordia”, 33100 Udine, Italy
| | - Ilaria Palmieri
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases-Buzzi Children’s Hospital, 20100 Milano, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Unusual Evolution of Hypertrophic Cardiomyopathy in Non-Compaction Myocardium in a Pompe Disease Patient. J Clin Med 2023; 12:jcm12062365. [PMID: 36983365 PMCID: PMC10052533 DOI: 10.3390/jcm12062365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Classic infantile Pompe disease is characterized by a severe phenotype with cardiomyopathy and hypotonia. Cardiomyopathy is generally hypertrophic and rapidly regresses after enzyme replacement therapy. In this report, for the first time, we describe a patient with infantile Pompe disease and hypertrophic cardiomyopathy that evolved into non-compaction myocardium after treatment. The male newborn had suffered since birth with hypertrophic cardiomyopathy and heart failure. He was treated with standard enzyme replacement therapy (ERT) (alglucosidase alfa) and several immunomodulation cycles due to the development of anti-ERT antibodies, without resolution of the hypertrophic cardiomyopathy. At the age of 2.5 years, he was treated with a new combination of ERT therapy (cipaglucosidase alfa) and a chaperone (miglustat) for compassionate use. After 1 year, the cardiac hypertrophy was resolved, but it evolved into non-compaction myocardium. Non-compaction cardiomyopathy is often considered to be a congenital, primitive cardiomyopathy, due to an arrest of compaction of the myocardium wall during the embryonal development. Several genetic causes have been identified. We first describe cardiac remodeling from hypertrophic cardiomyopathy to a non-compaction form in a patient with infantile Pompe disease treated with a new ERT. This has important implications both for the monitoring of Pompe disease patients and for the understanding of the pathophysiological basis of non-compaction myocardium.
Collapse
|