1
|
Dey P, Sharma SK, Sarkar I, Ray SD, Pramod P, Kochiganti VHS, Quadros G, Rathore SS, Singh V, Singh RP. Complete mitogenome of endemic plum-headed parakeet Psittacula cyanocephala - characterization and phylogenetic analysis. PLoS One 2021; 16:e0241098. [PMID: 33836001 PMCID: PMC8034733 DOI: 10.1371/journal.pone.0241098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Psittacula cyanocephala is an endemic parakeet from the Indian sub-continent that is widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting studies to resolve the issues. Since the mitochondrial genome provides useful information concerning the species evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species and scientific basis for phylogenetic revision of the genus Psittacula.
Collapse
Affiliation(s)
- Prateek Dey
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Sanjeev Kumar Sharma
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Indrani Sarkar
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Swapna Devi Ray
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Padmanabhan Pramod
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | | | - Goldin Quadros
- Wetland Ecology Division, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | | | - Vikram Singh
- Central University of Himachal Pradesh, Dharamshala, India
| | - Ram Pratap Singh
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
- Department of Life Science, Central University of South Bihar, Gaya, India
| |
Collapse
|
2
|
Krishnan A, Singh A, Tamma K. Visual signal evolution along complementary color axes in four bird lineages. Biol Open 2020; 9:bio052316. [PMID: 32878876 PMCID: PMC7520455 DOI: 10.1242/bio.052316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
Avian color patterns function in varied behavioral contexts, most being produced by only a handful of mechanisms including feather nanostructures and pigments. Within a clade, colors may not occupy the entire available space, and incorporating complementary colors may increase the contrast and efficacy of visual signals. Here, we describe plumage patterns in four ecologically and phylogenetically diverse bird families to test whether they possess complementary colors. We present evidence that plumage colors in each clade cluster along a line in tetrachromatic color space. Additionally, we present evidence that in three of these clades, this line contains colors on opposite sides of a line passing through the achromatic point (putatively complementary colors, presenting higher chromatic contrast). Finally, interspecific color variation over at least some regions of the body is not constrained by phylogenetic relatedness. By describing plumage patterns in four diverse lineages, we add to the growing body of literature suggesting that the diversity of bird visual signals is constrained. Further, we tentatively hypothesize that in at least some clades possessing bright colors, species-specific plumage patterns may evolve by swapping the distributions of a complementary color pair. Further research on other bird clades may help confirm whether these patterns are general across bird families.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Biology, Indian Institute of Science Education and Research, Pashan Road, Pune 411008, India
| | | | - Krishnapriya Tamma
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
3
|
Nachappa MP, Dey P, Sharma SK, Sarkar I, Ray SD, Singh RP. Partial mitochondrial genome of Indian rose-ringed parakeet ( Psittacula krameri) from India. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1731342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Machaiah Periyanda Nachappa
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
- Department of Life Science, Bangalore University, Bangalore, India
| | - Prateek Dey
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Sanjeev Kumar Sharma
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Indrani Sarkar
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Swapna Devi Ray
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Ram Pratap Singh
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| |
Collapse
|
4
|
Sarker S, Sutherland M, Talukder S, Das S, Forwood JK, Helbig K, Raidal SR. The first complete mitogenome of Indian ringneck (Psittacula krameri) demonstrates close phylogenetic relationship with Eclectus parrot. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3579-3581. [PMID: 33366094 PMCID: PMC7707189 DOI: 10.1080/23802359.2019.1676676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This study was aimed to sequence the first complete mitochondrial genome from an Indian ringneck parrot (Psittacula krameri). The mitogenome sequence was circular and 16,413 bp in length. In comparison to other available mitogenome sequences belonging to Psittacidae species, this mitogenome encoded a conserved structure consisting of 13 protein-coding genes (PCGs), two rRNA genes, 21 tRNA genes and a control region; however, this mitogenome missing a tRNA-Glu. The lengths of 12S and 16S ribosomal RNA were 975 bp and 1582 bp, respectively. The overall base composition of the mitogenome of P. krameri was dominated by higher AT (53.5%) than GC (46.5%) content. The complete mitogenome sequence determined in this study would be useful to track the more profound evolutionary history and the conservation of P. krameri.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia.,School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| | | | - Saranika Talukder
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, >Wagga Wagga, Australia
| | - Karla Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
5
|
Liu H, Ding Y, Chen R, Tong Q, Chen P. Complete mitogenomes of two Psittacula species, P. derbiana and P. eupatria. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1573124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hongyi Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yifan Ding
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Rong Chen
- Nanjing Hongshan Forest Zoo, Nanjing, China
| | - Qian Tong
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Peixian Chen
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Rapid morphological changes, admixture and invasive success in populations of Ring-necked parakeets (Psittacula krameri) established in Europe. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1103-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An Update of Wallace’s Zoogeographic Regions of the World. Science 2012; 339:74-8. [PMID: 23258408 DOI: 10.1126/science.1228282] [Citation(s) in RCA: 516] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Collapse
Affiliation(s)
- Ben G Holt
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a circovirus in the endangered Echo parakeet. J Virol 2012; 86:5221-9. [PMID: 22345474 DOI: 10.1128/jvi.06504-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circoviruses are among the smallest and simplest of all viruses, but they are relatively poorly characterized. Here, we intensively sampled two sympatric parrot populations from Mauritius over a period of 11 years and screened for the circovirus Beak and feather disease virus (BFDV). During the sampling period, a severe outbreak of psittacine beak and feather disease, which is caused by BFDV, occurred in Echo parakeets. Consequently, this data set presents an ideal system for studying the evolution of a pathogen in a natural population and to understand the adaptive changes that cause outbreaks. Unexpectedly, we discovered that the outbreak was most likely caused by changes in functionally important regions of the normally conserved replication-associated protein gene and not the immunogenic capsid. Moreover, these mutations were completely fixed in the Echo parakeet host population very shortly after the outbreak. Several capsid alleles were linked to the replication-associated protein outbreak allele, suggesting that whereas the key changes occurred in the latter, the scope of the outbreak and the selective sweep may have been influenced by positive selection in the capsid. We found evidence for viral transmission between the two host populations though evidence for the invasive species as the source of the outbreak was equivocal. Finally, the high evolutionary rate that we estimated shows how rapidly new variation can arise in BFDV and is consistent with recent results from other small single-stranded DNA viruses.
Collapse
|
9
|
Kundu S, Jones CG, Prys-Jones RP, Groombridge JJ. The evolution of the Indian Ocean parrots (Psittaciformes): extinction, adaptive radiation and eustacy. Mol Phylogenet Evol 2011; 62:296-305. [PMID: 22019932 DOI: 10.1016/j.ympev.2011.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/12/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
Parrots are among the most recognisable and widely distributed of all bird groups occupying major parts of the tropics. The evolution of the genera that are found in and around the Indian Ocean region is particularly interesting as they show a high degree of heterogeneity in distribution and levels of speciation. Here we present a molecular phylogenetic analysis of Indian Ocean parrots, identifying the possible geological and geographical factors that influenced their evolution. We hypothesise that the Indian Ocean islands acted as stepping stones in the radiation of the Old-World parrots, and that sea-level changes may have been an important determinant of current distributions and differences in speciation. A multi-locus phylogeny showing the evolutionary relationships among genera highlights the interesting position of the monotypic Psittrichas, which shares a common ancestor with the geographically distant Coracopsis. An extensive species-level molecular phylogeny indicates a complex pattern of radiation including evidence for colonisation of Africa, Asia and the Indian Ocean islands from Australasia via multiple routes, and of island populations 'seeding' continents. Moreover, comparison of estimated divergence dates and sea-level changes points to the latter as a factor in parrot speciation. This is the first study to include the extinct parrot taxa, Mascarinus mascarinus and Psittacula wardi which, respectively, appear closely related to Coracopsis nigra and Psittacula eupatria.
Collapse
Affiliation(s)
- S Kundu
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NR, UK.
| | | | | | | |
Collapse
|
10
|
Warren BH, Strasberg D, Bruggemann JH, Prys-Jones RP, Thébaud C. Why does the biota of the Madagascar region have such a strong Asiatic flavour? Cladistics 2010; 26:526-538. [DOI: 10.1111/j.1096-0031.2009.00300.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Schweizer M, Seehausen O, Güntert M, Hertwig ST. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Mol Phylogenet Evol 2010; 54:984-94. [DOI: 10.1016/j.ympev.2009.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
12
|
Zuccon D, Pasquet E, Ericson PGP. Phylogenetic relationships among Palearctic-Oriental starlings and mynas (generaSturnusandAcridotheres: Sturnidae). ZOOL SCR 2008. [DOI: 10.1111/j.1463-6409.2008.00339.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Manegold A. Composition and phylogenetic affinities of vangas (Vangidae, Oscines, Passeriformes) based on morphological characters. J ZOOL SYST EVOL RES 2008. [DOI: 10.1111/j.1439-0469.2008.00458.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Harmon LJ, Melville J, Larson A, Losos JB. The Role of Geography and Ecological Opportunity in the Diversification of Day Geckos (Phelsuma). Syst Biol 2008; 57:562-73. [DOI: 10.1080/10635150802304779] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Luke J. Harmon
- Department of Biological Sciences, University of Idaho
Moscow, Idaho 83844-3051, USA; E-mail:
- Biodiversity Centre, University of British Columbia
Vancouver, BC V6T 1Z4, Canada
- Department of Biology, Washington University
St Louis, Missouri 63130, USA
| | - Jane Melville
- Department of Biology, Washington University
St Louis, Missouri 63130, USA
- Department of Sciences, Museum Victoria
Melbourne, VIC 3001, Australia
| | - Allan Larson
- Department of Biology, Washington University
St Louis, Missouri 63130, USA
| | - Jonathan B. Losos
- Museum of Comparative Zoology and Department of Organismal and Evolutionary Biology, Harvard University, 26 Oxford Street
Cambridge, Massachusetts 02138, USA
| |
Collapse
|
15
|
Nanda I, Karl E, Griffin DK, Schartl M, Schmid M. Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 2007; 117:43-53. [PMID: 17675844 DOI: 10.1159/000103164] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 11/19/2022] Open
Abstract
Parrots (order: Psittaciformes) are the most common captive birds and have attracted human fascination since ancient times because of their remarkable intelligence and ability to imitate human speech. However, their genome organization, evolution and genomic relation with other birds are poorly understood. Chromosome painting with DNA probes derived from the flow-sorted macrochromosomes (1-10) of chicken (Gallus gallus, GGA) has been used to identify and distinguish the homoeologous chromosomal segments in three species of parrots, i.e., Agapornis roseicollis (peach-faced lovebird); Nymphicus hollandicus (cockatiel) and Melopsittacus undulatus (budgerigar). The ten GGA macrochromosome paints unequivocally recognize 14 to 16 hybridizing regions delineating the conserved chromosomal segments for the respective chicken macrochromosomes in these representative parrot species. The cross-species chromosome painting results show that, unlike in many other avian karyotypes with high homology to chicken chromosomes, dramatic rearrangements of the macrochromosomes have occurred in parrot lineages. Among the larger GGA macrochromosomes (1-5), chromosomes 1 and 4 are conserved on two chromosomes in all three species. However, the hybridization pattern for GGA 4 in A. roseicollis and M. undulatus is in sharp contrast to the most common pattern known from hybridization of chicken macrochromosome 4 in other avian karyotypes. With the exception of A. roseicollis, chicken chromosomes 2, 3 and 5 hybridized either completely or partially to a single chromosome. In contrast, the smaller GGA macrochromosomes 6, 7 and 8 displayed a complex hybridization pattern: two or three of these macrochromosomes were found to be contiguously arranged on a single chromosome in all three parrot species. Overall, the study shows that translocations and fusions in conjunction with intragenomic rearrangements have played a major role in the karyotype evolution of parrots. Our inter-species chromosome painting results unequivocally illustrate the dynamic reshuffling of ancestral chromosomes among the karyotypes of Psittaciformes.
Collapse
Affiliation(s)
- I Nanda
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
LIVEZEY BRADLEYC, ZUSI RICHARDL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc 2007; 149:1-95. [PMID: 18784798 PMCID: PMC2517308 DOI: 10.1111/j.1096-3642.2006.00293.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In recent years, avian systematics has been characterized by a diminished reliance on morphological cladistics of modern taxa, intensive palaeornithogical research stimulated by new discoveries and an inundation by analyses based on DNA sequences. Unfortunately, in contrast to significant insights into basal origins, the broad picture of neornithine phylogeny remains largely unresolved. Morphological studies have emphasized characters of use in palaeontological contexts. Molecular studies, following disillusionment with the pioneering, but non-cladistic, work of Sibley and Ahlquist, have differed markedly from each other and from morphological works in both methods and findings. Consequently, at the turn of the millennium, points of robust agreement among schools concerning higher-order neornithine phylogeny have been limited to the two basalmost and several mid-level, primary groups. This paper describes a phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform families, and subordinal representatives of Passeriformes. Thirty-five outgroup taxa encompassing Crocodylia, predominately theropod Dinosauria, and selected Mesozoic birds were used to root the trees. Based on study of specimens and the literature, 2954 morphological characters were defined; these characters have been described in a companion work, approximately one-third of which were multistate (i.e. comprised at least three states), and states within more than one-half of these multistate characters were ordered for analysis. Complete heuristic searches using 10 000 random-addition replicates recovered a total solution set of 97 well-resolved, most-parsimonious trees (MPTs). The set of MPTs was confirmed by an expanded heuristic search based on 10 000 random-addition replicates and a full ratchet-augmented exploration to ascertain global optima. A strict consensus tree of MPTs included only six trichotomies, i.e. nodes differing topologically among MPTs. Bootstrapping (based on 10 000 replicates) percentages and ratchet-minimized support (Bremer) indices indicated most nodes to be robust. Several fossil Neornithes (e.g. Dinornithiformes, Aepyornithiformes) were placed within the ingroup a posteriori either through unconstrained, heursitic searches based on the complete matrix augmented by these taxa separately or using backbone-constraints. Analysis confirmed the topology among outgroup Theropoda and achieved robust resolution at virtually all levels of the Neornithes. Findings included monophyly of the palaeognathous birds, comprising the sister taxa Tinamiformes and ratites, respectively, and the Anseriformes and Galliformes as monophyletic sister-groups, together forming the sister-group to other Neornithes exclusive of the Palaeognathae (Neoaves). Noteworthy inferences include: (i) the sister-group to remaining Neoaves comprises a diversity of marine and wading birds; (ii) Podicipedidae are the sister-group of Gaviidae, and not closely related to the Phoenicopteridae, as recently suggested; (iii) the traditional Pelecaniformes, including the shoebill (Balaeniceps rex) as sister-taxon to other members, are monophyletic; (iv) traditional Ciconiiformes are monophyletic; (v) Strigiformes and Falconiformes are sister-groups; (vi) Cathartidae is the sister-group of the remaining Falconiformes; (vii) Ralliformes (Rallidae and Heliornithidae) are the sister-group to the monophyletic Charadriiformes, with the traditionally composed Gruiformes and Turniciformes (Turnicidae and Mesitornithidae) sequentially paraphyletic to the entire foregoing clade; (viii) Opisthocomus hoazin is the sister-taxon to the Cuculiformes (including the Musophagidae); (ix) traditional Caprimulgiformes are monophyletic and the sister-group of the Apodiformes; (x) Trogoniformes are the sister-group of Coliiformes; (xi) Coraciiformes, Piciformes and Passeriformes are mutually monophyletic and closely related; and (xii) the Galbulae are retained within the Piciformes. Unresolved portions of the Neornithes (nodes having more than one most-parsimonious solution) comprised three parts of the tree: (a) several interfamilial nodes within the Charadriiformes; (b) a trichotomy comprising the (i) Psittaciformes, (ii) Columbiformes and (iii) Trogonomorphae (Trogoniformes, Coliiformes) + Passerimorphae (Coraciiformes, Piciformes, Passeriformes); and (c) a trichotomy comprising the Coraciiformes, Piciformes and Passeriformes. The remaining polytomies were among outgroups, although several of the highest-order nodes were only marginally supported; however, the majority of nodes were resolved and met or surpassed conventional standards of support. Quantitative comparisons with alternative hypotheses, examination of highly supportive and diagnostic characters for higher taxa, correspondences with prior studies, complementarity and philosophical differences with palaeontological phylogenetics, promises and challenges of palaeogeography and calibration of evolutionary rates of birds, and classes of promising evidence and future directions of study are reviewed. Homology, as applied to avian examples of apparent homologues, is considered in terms of recent theory, and a revised annotated classification of higher-order taxa of Neornithes and other closely related Theropoda is proposed. (c) 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 1-95.
Collapse
Affiliation(s)
- BRADLEY C LIVEZEY
- Section of Birds, Carnegie Museum of Natural History4400 Forbes Avenue, Pittsburgh, PA 15213-4080, USA
| | - RICHARD L ZUSI
- Division of Birds, National Museum of Natural HistoryWashington, DC 20013-7012, USA
| |
Collapse
|
17
|
de Kloet RS, de Kloet SR. The evolution of the spindlin gene in birds: sequence analysis of an intron of the spindlin W and Z gene reveals four major divisions of the Psittaciformes. Mol Phylogenet Evol 2005; 36:706-21. [PMID: 16099384 DOI: 10.1016/j.ympev.2005.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/04/2005] [Accepted: 03/11/2005] [Indexed: 11/25/2022]
Abstract
The Psittaciformes (parrots, parakeets) are among the most widely held captive birds. Yet, their evolution and their phylogenetic relationships have been relatively little studied. This paper describes the phylogenetic relationships between a number of Psittaciformes as derived from the sequences of the third intron of the Z-chromosomal and W-chromosomal spindlin genes. The Z-chromosomal sequences of the kakapo (Strigops habroptilus), the kea (Nestor notabilis), and the kaka (Nestor meridionalis) from New Zealand form a cluster which is the sister group to all other Psittaciformes. The results show further that the Z-chromosomal sequences of the other species can be divided into two groups based on the occurrence of a sequence element ACCCT. The group with the insert (A) is mainly from species with an Australasian geographical distribution and includes such species as the Lories (Lorius, etc.), the budgerigar (Melospittacus undulatus), and the rosellas (Platycercus). It also includes the African lovebirds (Agapornidae), which are the only representative of group A outside Australasia. Group B, without the insert, includes the neotropical parrots and parakeets such as the amazons (Amazona, etc.), the macaws (Ara, etc.), and the conures (Aratinga, etc.), the Australian Cacatuini and the African species such as the African grey parrot (Psittacus erithacus) as well as Coracopsis vasa from Madagascar and Psittrichas fulgidus from New Guinea. The W-chromosomal sequence data show that another division of the Psittacidae is found in the replacement of a pyrimidine-rich segment occurring in many non-psittacines as well as the kakapo (S. habroptilus), the kea (N. notabilis), the kaka (N. meridionalis), and the Cacatuini by a microsatellite consisting of a variable number of TATTA monomers in the other Psittaciformes. The results support a Gondwanan origin of the Psittaciformes and the suggestion that paleogeographic events were a major force in psittacine divergence.
Collapse
|