1
|
Hellebuyck T, Kotyk M, Vilanova FS, Čepička I. The association of bacterial agents and flagellated protozoans with subspectacular abscesses in snakes. Vet Ophthalmol 2024; 27:389-391. [PMID: 38701033 DOI: 10.1111/vop.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Tom Hellebuyck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ferran Solanes Vilanova
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Suzuki J, Sardar SK, Ghosal A, Yoshida N, Kurai H, Takahashi YA, Saito-Nakano Y, Ganguly S, Kobayashi S. Phylogenetic analyses of Chilomastix and Retortamonas species using in vitro excysted flagellates. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e011923. [PMID: 38055438 DOI: 10.1590/s1984-29612023070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023]
Abstract
In vitro excystation of cysts of microscopically identified Chilomastix mesnili and Retortamonas sp. isolated from Japanese macaques and Retortamonas sp. isolated from small Indian mongooses could be induced using an established protocol for Giardia intestinalis and subsequently by culturing with H2S-rich Robinson's medium supplemented with Desulfovibrio desulfuricans. Excystation usually began 2 h after incubation in Robinson's medium. DNA was isolated from excysted flagellates after 4 h of incubation or from cultured excysted flagellates. Phylogenetic analysis based on their 18S rRNA genes revealed that two isolates of C. mesnili from Japanese macaques belonged to the same cluster as a C. mesnili isolate from humans, whereas a mammalian Retortamonas sp. isolate from a small Indian mongoose belonged to the same cluster as that of an amphibian Retortamonas spp. isolate from a 'poison arrow frog' [sequence identity to AF439347 (94.9%)]. These results suggest that the sequence homology of the 18S rRNA gene of the two C. mesnili isolates from Japanese macaques was similar to that of humans, in addition to the morphological similarity, and Retortamonas sp. infection of the amphibian type in the small Indian mongoose highlighted the possibility of the effect of host feeding habitats.
Collapse
Affiliation(s)
- Jun Suzuki
- Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Sanjib Kumar Sardar
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Belaghata, Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Belaghata, Kolkata, India
| | - Naoko Yoshida
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hanako Kurai
- Division of Infectious Diseases, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan
| | - Yudai Alex Takahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Belaghata, Kolkata, India
| | - Seiki Kobayashi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
3
|
Kolisko M, Flegontova O, Karnkowska A, Lax G, Maritz JM, Pánek T, Táborský P, Carlton JM, Čepička I, Horák A, Lukeš J, Simpson AGB, Tai V. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996027. [PMID: 33216898 PMCID: PMC7678783 DOI: 10.1093/database/baaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists—a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.
Collapse
Affiliation(s)
- Martin Kolisko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Olga Flegontova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland.,Department of Parasitology, BIOCEV, Faculty of Science, Charles University, 128 43 Vestec, Czech Republic
| | - Gordon Lax
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia M Maritz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tomáš Pánek
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Petr Táborský
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ivan Čepička
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Alastair G B Simpson
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vera Tai
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
4
|
Hendarto J, Mizuno T, Hidayati APN, Rozi IE, Asih PBS, Syafruddin D, Yoshikawa H, Matsubayashi M, Tokoro M. Three monophyletic clusters in Retortamonas species isolated from vertebrates. Parasitol Int 2018; 69:93-98. [PMID: 30550977 DOI: 10.1016/j.parint.2018.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Retortamonas spp. has been reported as an intestinal parasite among various host organisms, including humans; however, its intra-genus molecular diversity has not yet been elucidated. Haplotypes of the 18S small subunit ribosomal RNA locus (1836-1899 bp) of Retortamonas spp. from humans (n = 8), pigs (n = 6), dogs (n = 1), goats (n = 16), water buffalos (n = 23), cattle (n = 7), rats (n = 3), and chickens (n = 5) were analyzed with references isolated from non-human mammals, amphibians, and insects. Phylogenetic and network analyses revealed a statistically supported three cluster formation among the vertebrate-isolated haplotypes, while insect-isolated haplotypes were independently clustered with Chilomastix. In the clade of vertebrate isolates, assemblage A (amphibian genotype), which included the amphibian references, was addressed as an out-group of the other clusters. Assemblage B (mammalian and chicken genotype) included most haplotypes from various mammals including humans with the haplotypes isolated from a chicken. Human isolates were all classified into this assemblage, thus assemblage B might correspond to R. intestinalis. Assemblage C (bovine genotype), which included specific haplotypes from water buffalos and cattle, was addressed as a sister lineage of assemblage B. Among the diversified haplotypes of assemblage B, a specific haplotype, which was identified from multiple host mammals (humans, dogs, pigs, cattle, water buffalos, elks, goats, and rats), indicates the potential zoonotic transmission of the Retortamonas among them. The genotyping classification of retortamonads could contribute to a better understanding of its molecular epidemiology, especially among humans and related host organisms.
Collapse
Affiliation(s)
- Joko Hendarto
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Tetsushi Mizuno
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Anggi P N Hidayati
- Malaria and Vector Resistance Laboratory, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia
| | - Ismail E Rozi
- Malaria and Vector Resistance Laboratory, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia
| | - Puji B S Asih
- Malaria and Vector Resistance Laboratory, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia
| | - Din Syafruddin
- Malaria and Vector Resistance Laboratory, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia; Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Hisao Yoshikawa
- Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Masaharu Tokoro
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
5
|
Yubuki N, Zadrobílková E, Čepička I. Ultrastructure and Molecular Phylogeny of Iotanema spirale gen. nov. et sp. nov., a New Lineage of Endobiotic Fornicata with Strikingly Simplified Ultrastructure. J Eukaryot Microbiol 2016; 64:422-433. [PMID: 27749017 DOI: 10.1111/jeu.12376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/30/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Fornicata (Metamonada) is a group of Excavata living in low-oxygen environments and lacking conventional mitochondria. It includes free-living Carpediemonas-like organisms from marine habitats and predominantly parasitic/commensal retortamonads and diplomonads. Current modest knowledge of biodiversity of Fornicata limits our ability to draw a complete picture of the evolutionary history in this group. Here, we report the discovery of a novel fornicate, Iotanema spirale gen. nov. et sp. nov., obtained from fresh feces of the gecko Phelsuma madagascariensis. Our phylogenetic analyses of the small subunit ribosomal RNA gene demonstrate that I. spirale is closely related to the free-living, marine strain PCS and the Carpediemonas-like organism Hicanonectes teleskopos within Fornicata. Iotanema spirale exhibits several features uncommon to fornicates, such as a single flagellum, a highly reduced cytoskeletal system, and the lack of the excavate ventral groove, but shares these characters with the poorly known genus Caviomonas. Therefore, I. spirale is accommodated within the family Caviomonadidae, which represents the third known endobiotic lineage of Fornicata. This study improves our understanding of character evolution within Fornicata when placed within the molecular phylogenetic context.
Collapse
Affiliation(s)
- Naoji Yubuki
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic.,Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 48, Prague, 100 42, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| |
Collapse
|
6
|
Evolution of the microtubular cytoskeleton (flagellar apparatus) in parasitic protists. Mol Biochem Parasitol 2016; 209:26-34. [DOI: 10.1016/j.molbiopara.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/16/2023]
|
7
|
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. The revised classification of eukaryotes. J Eukaryot Microbiol 2013; 59:429-93. [PMID: 23020233 DOI: 10.1111/j.1550-7408.2012.00644.x] [Citation(s) in RCA: 920] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.
Collapse
Affiliation(s)
- Sina M Adl
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Takishita K, Kolisko M, Komatsuzaki H, Yabuki A, Inagaki Y, Cepicka I, Smejkalová P, Silberman JD, Hashimoto T, Roger AJ, Simpson AGB. Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of 'amitochondriate' diplomonads and retortamonads. Protist 2012; 163:344-55. [PMID: 22364773 DOI: 10.1016/j.protis.2011.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022]
Abstract
Diplomonads, retortamonads, and "Carpediemonas-like" organisms (CLOs) are a monophyletic group of protists that are microaerophilic/anaerobic and lack typical mitochondria. Most diplomonads and retortamonads are parasites, and the pathogen Giardia intestinalis is known to possess reduced mitochondrion-related organelles (mitosomes) that do not synthesize ATP. By contrast, free-living CLOs have larger organelles that superficially resemble some hydrogenosomes, organelles that in other protists are known to synthesize ATP anaerobically. This group represents an excellent system for studying the evolution of parasitism and anaerobic, mitochondrion-related organelles. Understanding these evolutionary transitions requires a well-resolved phylogeny of diplomonads, retortamonads and CLOs. Unfortunately, until now the deep relationships amongst these taxa were unresolved due to limited data for almost all of the CLO lineages. To address this, we assembled a dataset of up to six protein-coding genes that includes representatives from all six CLO lineages, and complements existing rRNA datasets. Multigene phylogenetic analyses place CLOs as well as the retortamonad Chilomastix as a paraphyletic basal assemblage to the lineage comprising diplomonads and the retortamonad Retortamonas. In particular, the CLO Dysnectes was shown to be the closest relative of the diplomonads + Retortamonas clade, with strong support. This phylogeny is consistent with a drastic degeneration of mitochondrion-related organelles during the evolution from a free-living organism resembling extant CLOs to a probable parasite/commensal common ancestor of diplomonads and Retortamonas.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kolisko M, Silberman JD, Cepicka I, Yubuki N, Takishita K, Yabuki A, Leander BS, Inouye I, Inagaki Y, Roger AJ, Simpson AGB. A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol 2011; 12:2700-10. [PMID: 20482740 DOI: 10.1111/j.1462-2920.2010.02239.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last 15 years classical culturing and environmental PCR techniques have revealed a modest number of genuinely new major lineages of protists; however, some new groups have greatly influenced our understanding of eukaryote evolution. We used culturing techniques to examine the diversity of free-living protists that are relatives of diplomonads and retortamonads, a group of evolutionary and parasitological importance. Until recently, a single organism, Carpediemonas membranifera, was the only representative of this region of the tree. We report 18 new isolates of Carpediemonas-like organisms (CLOs) from anoxic marine sediments. Only one is a previously cultured species. Eleven isolates are conspecific and were classified within a new genus, Kipferlia n. gen. The remaining isolates include representatives of three other lineages that likely represent additional undescribed genera (at least). Small-subunit ribosomal RNA gene phylogenies show that CLOs form a cloud of six major clades basal to the diplomonad-retortamonad grouping (i.e. each of the six CLO clades is potentially as phylogenetically distinct as diplomonads and retortamonads). CLOs will be valuable for tracing the evolution of diplomonad cellular features, for example, their extremely reduced mitochondrial organelles. It is striking that the majority of CLO diversity was undetected by previous light microscopy surveys and environmental PCR studies, even though they inhabit a commonly sampled environment. There is no reason to assume this is a unique situation - it is likely that undersampling at the level of major lineages is still widespread for protists.
Collapse
Affiliation(s)
- Martin Kolisko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
PARK JONGSOO, KOLISKO MARTIN, SIMPSON ALASTAIRG. Cell Morphology and Formal Description of Ergobibamus cyprinoides n. g., n. sp., Another Carpediemonas-Like Relative of Diplomonads. J Eukaryot Microbiol 2010; 57:520-8. [DOI: 10.1111/j.1550-7408.2010.00506.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
PARK JONGSOO, KOLISKO MARTIN, HEISS AARONA, SIMPSON ALASTAIRG. Light Microscopic Observations, Ultrastructure, and Molecular Phylogeny ofHicanonectes teleskoposn. g., n. sp., a Deep-Branching Relative of Diplomonads. J Eukaryot Microbiol 2009; 56:373-84. [DOI: 10.1111/j.1550-7408.2009.00412.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|