1
|
García-Lozano M, Salem H. Microbial bases of herbivory in beetles. Trends Microbiol 2024:S0966-842X(24)00216-6. [PMID: 39327210 DOI: 10.1016/j.tim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
The ecological radiation of herbivorous beetles is among the most successful in the animal kingdom. It coincided with the rise and diversification of flowering plants, requiring beetles to adapt to a nutritionally imbalanced diet enriched in complex polysaccharides and toxic secondary metabolites. In this review, we explore how beetles overcame these challenges by coopting microbial genes, enzymes, and metabolites, through both horizontal gene transfer (HGT) and symbiosis. Recent efforts revealed the functional convergence governing both processes and the unique ways in which microbes continue to shape beetle digestion, development, and defense. The development of genetic and experimental tools across a diverse set of study systems has provided valuable mechanistic insights into how microbes spurred metabolic innovation and facilitated an herbivorous transition in beetles.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
2
|
An Y, Braga MP, Garcia SL, Grudzinska-Sterno M, Hambäck PA. Host Phylogeny Structures the Gut Bacterial Community Within Galerucella Leaf Beetles. MICROBIAL ECOLOGY 2023; 86:2477-2487. [PMID: 37314477 PMCID: PMC10640405 DOI: 10.1007/s00248-023-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
Gut microbes play important roles for their hosts. Previous studies suggest that host-microbial systems can form long-term associations over evolutionary time and the dynamic changes of the intestinal system may represent major driving forces and contribute to insect dietary diversification and speciation. Our study system includes a set of six closely related leaf beetle species (Galerucella spp.) and our study aims to separate the roles of host phylogeny and ecology in determining the gut microbial community and to identify eventual relationship between host insects and gut bacteria. We collected adult beetles from their respective host plants and quantified their microbial community using 16S rRNA sequencing. The results showed that the gut bacteria community composition was structured by host beetle phylogeny, where more or less host-specific gut bacteria interact with the different Galerucella species. For example, the endosymbiotic bacteria Wolbachia was found almost exclusively in G. nymphaea and G. sagittariae. Diversity indicators also suggested that α- and β-diversities of gut bacteria communities varied among host beetle species. Overall, our results suggest a phylogenetically controlled co-occurrence pattern between the six closely related Galerucella beetles and their gut bacteria, indicating the potential of co-evolutionary processes occurring between hosts and their gut bacterial communities.
Collapse
Affiliation(s)
- Yueqing An
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | | | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Abstract
Beetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles.
Collapse
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany;
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz 55128, Germany
| |
Collapse
|
4
|
Brunetti M, Magoga G, Gionechetti F, De Biase A, Montagna M. Does diet breadth affect the complexity of the phytophagous insect microbiota? The case study of Chrysomelidae. Environ Microbiol 2021; 24:3565-3579. [PMID: 34850518 PMCID: PMC9543054 DOI: 10.1111/1462-2920.15847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023]
Abstract
Chrysomelidae is a family of phytophagous insects with a highly variable degree of trophic specialization. The aim of this study is to test whether species feeding on different plants (generalists) harbour more complex microbiotas than those feeding on a few or a single plant species (specialists). The microbiota of representative leaf beetle species was characterized with a metabarcoding approach targeting V1–V2 and V4 regions of the bacterial 16S rRNA. Almost all the analysed species harbour at least one reproductive manipulator bacteria (e.g., Wolbachia, Rickettsia). Two putative primary symbionts, previously isolated only from a single species (Bromius obscurus), have been detected in two species of the same subfamily, suggesting a widespread symbiosis in Eumolpinae. Surprisingly, the well‐known aphid symbiont Buchnera is well represented in the microbiota of Orsodacne humeralis. Moreover, in this study, using Hill numbers to dissect the components of the microbiota diversity (abundant and rare bacteria), it has been demonstrated that generalist insect species harbour a more diversified microbiota than specialists. The higher microbiota diversity associated with a wider host‐plant spectrum could be seen as an adaptive trait, conferring new metabolic potential useful to expand the diet breath, or as a result of environmental stochastic acquisition conveyed by diet.
Collapse
Affiliation(s)
- Matteo Brunetti
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Giulia Magoga
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | | | - Alessio De Biase
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Viale dell'Università 32, Rome, 00185, Italy
| | - Matteo Montagna
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy.,BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", Portici, Italy
| |
Collapse
|
5
|
Cao Y, Dietrich CH. Phylogenomics of flavobacterial insect nutritional endosymbionts with implications for Auchenorrhyncha phylogeny. Cladistics 2021; 38:38-58. [DOI: 10.1111/cla.12474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yanghui Cao
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign IL61820USA
| | - Christopher H. Dietrich
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign IL61820USA
| |
Collapse
|
6
|
Reis F, Kirsch R, Pauchet Y, Bauer E, Bilz LC, Fukumori K, Fukatsu T, Kölsch G, Kaltenpoth M. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nat Commun 2020; 11:2964. [PMID: 32528063 PMCID: PMC7289800 DOI: 10.1038/s41467-020-16687-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022] Open
Abstract
Symbiotic microbes can enable their host to access untapped nutritional resources but may also constrain niche space by promoting specialization. Here, we reconstruct functional changes in the evolutionary history of the symbiosis between a group of (semi-)aquatic herbivorous insects and mutualistic bacteria. Sequencing the symbiont genomes across 26 species of reed beetles (Chrysomelidae, Donaciinae) spanning four genera indicates that the genome-eroded mutualists provide life stage-specific benefits to larvae and adults, respectively. In the plant sap-feeding larvae, the symbionts are inferred to synthesize most of the essential amino acids as well as the B vitamin riboflavin. The adult reed beetles’ folivory is likely supported by symbiont-encoded pectinases that complement the host-encoded set of cellulases, as revealed by transcriptome sequencing. However, mapping the occurrence of the symbionts’ pectinase genes and the hosts’ food plant preferences onto the beetles’ phylogeny reveals multiple independent losses of pectinase genes in lineages that switched to feeding on pectin-poor plants, presumably constraining their hosts’ subsequent adaptive potential. Symbiotic microbes in insects can enable their hosts to access untapped nutritional resources. Here, the authors show that symbiotic bacteria in reed beetles can provide essential amino acids to sap-feeding larvae and help leaf-feeding adults to degrade pectin, respectively.
Collapse
Affiliation(s)
- Frank Reis
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Lisa Carolin Bilz
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Kayoko Fukumori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Gregor Kölsch
- Molekulare Evolutionsbiologie, Institut für Zoologie, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Maasen 6, 24107, Kiel, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 2019; 104:489-508. [DOI: 10.1007/s00253-019-10239-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
8
|
Mason CJ, Jones AG, Felton GW. Co-option of microbial associates by insects and their impact on plant-folivore interactions. PLANT, CELL & ENVIRONMENT 2019; 42:1078-1086. [PMID: 30151965 DOI: 10.1111/pce.13430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/28/2023]
Abstract
Plants possess a suite of traits that make them challenging to consume by insect herbivores. Plant tissues are recalcitrant, have low levels of protein, and may be well defended by chemicals. Insects use diverse strategies for overcoming these barriers, including co-opting metabolic activities from microbial associates. In this review, we discuss the co-option of bacteria and fungi in the herbivore gut. We particularly focus upon chewing, folivorous insects (Coleoptera and Lepidoptera) and discuss the impacts of microbial co-option on herbivore performance and plant responses. We suggest that there are two components to microbial co-option: fixed and plastic relationships. Fixed relationships are involved in integral dietary functions and can be performed by microbial enzymes co-opted into the genome or by stably transferred associates. In contrast, the majority of gut symbionts appear to be looser and perform more facultative, context-dependent functions. This more plastic, variable co-option of bacteria likely produces a greater number of insect phenotypes, which interact differently with plant hosts. By altering plant detection of herbivory or mediating insect interactions with plant defensive compounds, microbes can effectively improve herbivore performance in real time within and between generations.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
9
|
Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019; 366:5289862. [DOI: 10.1093/femsle/fnz013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060; USA
| |
Collapse
|
10
|
Hirota B, Okude G, Anbutsu H, Futahashi R, Moriyama M, Meng XY, Nikoh N, Koga R, Fukatsu T. A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle. mBio 2017; 8:e01482-17. [PMID: 28951480 PMCID: PMC5615201 DOI: 10.1128/mbio.01482-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae), is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae). The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host's growth and reproduction but contributes to the host's cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont's biological roles for the stored-product pest.IMPORTANCE Some beetles notorious as stored-product pests possess well-developed symbiotic organs called bacteriomes for harboring specific symbiotic bacteria, although their biological roles have been poorly understood. Here we report a peculiar endosymbiotic system of a grain pest beetle, Oryzaephilus surinamensis, in which four oval bacteriomes in the abdomen are full of extremely elongated tubular bacterial cells. Experimental symbiont elimination did not hinder the host's growth and reproduction, but resulted in emergence of reddish beetles, uncovering the symbiont's involvement in host's cuticle formation. We speculate that the extremely elongated symbiont cell morphology might be due to the degenerative symbiont genome deficient in bacterial cell division and/or cell wall formation, which highlights an evolutionary consequence of intimate host-symbiont coevolution.
Collapse
Affiliation(s)
- Bin Hirota
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Genta Okude
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Hisashi Anbutsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Xian-Ying Meng
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, the Open University of Japan, Chiba, Japan
| | - Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Lalzar I, Friedmann Y, Gottlieb Y. Tissue tropism and vertical transmission ofCoxiellainRhipicephalus sanguineusandRhipicephalus turanicusticks. Environ Microbiol 2014; 16:3657-68. [DOI: 10.1111/1462-2920.12455] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/27/2014] [Accepted: 03/13/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Itai Lalzar
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Yael Friedmann
- Bio-Imaging Unit; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
12
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1300] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
13
|
Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 2013; 23:1473-1496. [PMID: 23952067 DOI: 10.1111/mec.12421] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/02/2013] [Accepted: 06/12/2013] [Indexed: 01/18/2023]
|
14
|
Nováková E, Hypša V, Klein J, Foottit RG, von Dohlen CD, Moran NA. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol Phylogenet Evol 2013; 68:42-54. [DOI: 10.1016/j.ympev.2013.03.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/16/2023]
|
15
|
Kölsch G, Synefiaridou D. Shared Ancestry of Symbionts? Sagrinae and Donaciinae (Coleoptera, Chrysomelidae) Harbor Similar Bacteria. INSECTS 2012; 3:473-91. [PMID: 26466539 PMCID: PMC4553606 DOI: 10.3390/insects3020473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 12/03/2022]
Abstract
When symbioses between insects and bacteria are discussed, the origin of a given association is regularly of interest. We examined the evolution of the symbiosis between reed beetles (Coleoptera, Chrysomelidae, Donaciinae) and intracellular symbionts belonging to the Enterobacteriaceae. We analyzed the partial sequence of the 16S rRNA to assess the phylogenetic relationships with bacteria we found in other beetle groups (Cerambycidae, Anobiidae, other Chrysomelidae). We discuss the ecology of each association in the context of the phylogenetic analysis. The bacteria in Sagra femorata (Chrysomelidae, Sagrinae) are very closely related to those in the Donaciinae and are located in similar mycetomes. The Sagrinae build a cocoon for pupation like the Donaciinae, in which the bacteria produce the material required for the cocoon. These aspects support the close relationship between Sagrinae and Donaciinae derived in earlier studies and make a common ancestry of the symbioses likely. Using PCR primers specific for fungi, we found Candida sp. in the mycetomes of a cerambycid beetle along with the bacteria.
Collapse
Affiliation(s)
- Gregor Kölsch
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Dimitra Synefiaridou
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
16
|
Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol 2011; 9:87. [PMID: 22201529 PMCID: PMC3271043 DOI: 10.1186/1741-7007-9-87] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework. RESULTS We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade. CONCLUSIONS The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.
Collapse
Affiliation(s)
- Filip Husník
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Chrudimský
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
- Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
17
|
Kleinschmidt B, Kölsch G. Adopting Bacteria in Order to Adapt to Water-How Reed Beetles Colonized the Wetlands (Coleoptera, Chrysomelidae, Donaciinae). INSECTS 2011; 2:540-54. [PMID: 26467833 PMCID: PMC4553447 DOI: 10.3390/insects2040540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/16/2011] [Accepted: 11/25/2011] [Indexed: 11/16/2022]
Abstract
The present paper reviews the biology of reed beetles (Donaciinae), presents experimental data on the role of specific symbiotic bacteria, and describes a molecular method for the detection of those bacteria. Reed beetles are herbivores living on wetland plants, each species being mono- or oligo-phagous. They lay their eggs on the host plant and the larvae live underwater in the sediment attached to its roots. The larvae pupate there in a water-tight cocoon, which they build using a secretion that is produced by symbiotic bacteria. The bacteria are located in four blind sacs at the foregut of the larvae; in (female) adults they colonize two out of the six Malpighian tubules. Tetracycline treatment of larvae reduced their pupation rate, although the bacteria could not be fully eliminated. When the small amount of bacterial mass attached to eggs was experimentally removed before hatching, symbiont free larvae resulted, showing the external transmission of the bacteria to the offspring. Specific primers were designed to detect the bacteria, and to confirm their absence in manipulated larvae. The pupation underwater enabled the reed beetles to permanently colonize the wetlands and to diversify in this habitat underexploited by herbivorous insects (adaptive radiation).
Collapse
Affiliation(s)
- Birgit Kleinschmidt
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Gregor Kölsch
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
18
|
Influence of host phylogeographic patterns and incomplete lineage sorting on within-species genetic variability in Wigglesworthia species, obligate symbionts of tsetse flies. Appl Environ Microbiol 2011; 77:8400-8. [PMID: 21948847 DOI: 10.1128/aem.05688-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.
Collapse
|
19
|
Sachs JL, Essenberg CJ, Turcotte MM. New paradigms for the evolution of beneficial infections. Trends Ecol Evol 2011; 26:202-9. [PMID: 21371775 DOI: 10.1016/j.tree.2011.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
A longstanding paradigm predicts that microbial parasites and mutualists exhibit disparate evolutionary patterns. Parasites are predicted to promote arms races with hosts, rapid evolution and sexual recombination. By contrast, mutualists have been linked with beneficial coadaptation, evolutionary stasis and asexuality. In this review we discuss the recent surge of molecular data on microbes that are being used to test and reshape these ideas. New analyses reveal that beneficial microbes often share mechanisms of infection and defense with parasites, and can also exhibit rapid evolution and extensive genetic exchange. To explain these patterns, new paradigms must take into account the varied population biology of beneficial microbes, their potential conflicts with hosts, and the mosaic nature of genome evolution that requires locus-based tests to analyze the genetics of host adaptation.
Collapse
Affiliation(s)
- Joel L Sachs
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|