1
|
Han M, Qie Q, Liu M, Meng H, Wu T, Yang Y, Niu L, Sun G, Wang Y. Clonal growth characteristics and diversity patterns of different Clintonia udensis (Liliaceae) diploid and tetraploid cytotypes in the Hualongshan Mountains. Sci Rep 2024; 14:15509. [PMID: 38969683 PMCID: PMC11226640 DOI: 10.1038/s41598-024-66067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Polyploidization plays an important role in plant evolution and biodiversity. However, intraspecific polyploidy compared to interspecific polyploidy received less attention. Clintonia udensis (Liliaceae) possess diploid (2n = 2x = 14) and autotetraploid (2n = 4x = 28) cytotypes. In the Hualongshan Mountains, the autotetraploids grew on the northern slope, while the diploids grew on the southern slopes. The clonal growth characteristics and clonal architecture were measured and analyzed by field observations and morphological methods. The diversity level and differentiation patterns for two different cytotypes were investigated using SSR markers. The results showed that the clonal growth parameters, such as the bud numbers of each rhizome node and the ratio of rhizome branches in the autotetraploids were higher than those in the diploids. Both the diploids and autotetraploids appeared phalanx clonal architectures with short internodes between ramets. However, the ramets or genets of the diploids had a relatively scattered distribution, while those of the autotetraploids were relatively clumping. The diploids and autotetraploids all allocated more biomass to their vegetative growth. The diploids had a higher allocation to reproductive organs than that of autotetraploids, which indicated that the tetraploids invested more resources in clonal reproduction than diploids. The clone diversity and genetic diversity of the autotetraploids were higher than that of the diploids. Significant genetic differentiation between two different cytotypes was observed (P < 0.01). During establishment and evolution, C. udensis autotetraploids employed more clumping phalanx clonal architecture and exhibited more genetic variation than the diploids.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Qiyang Qie
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Meilan Liu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Huiqin Meng
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Tiantian Wu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yadi Yang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Lingling Niu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Genlou Sun
- Department of Botany, Saint Mary's University, Halifax, NS B3H 3C3, Canada.
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
2
|
Wang MN, Duan L, Qiao Q, Wang ZF, Zimmer EA, Li ZC, Chen HF. Phylogeography and conservation genetics of the rare and relict Bretschneidera sinensis (Akaniaceae). PLoS One 2018; 13:e0189034. [PMID: 29329302 PMCID: PMC5766123 DOI: 10.1371/journal.pone.0189034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/19/2017] [Indexed: 11/21/2022] Open
Abstract
Bretschneidera sinensis, a class-I protected wild plant in China, is a relic of the ancient Tertiary tropical flora endemic to Asia. However, little is known about its genetics and phylogeography. To elucidate the current phylogeographic patterns and infer the historical population dynamics of B. sinensis, and to make recommendations for its conservation, three non-coding regions of chloroplast DNA (trnQ-rps16, rps8-rps11, and trnT-trnL) were amplified and sequenced across 256 individuals from 23 populations of B. sinensis, spanning 10 provinces of China. We recognized 13 haplotypes, demonstrating relatively high total haplotype diversity (hT = 0.739). Almost all of the variation existed among populations (98.09%, P < 0.001), but that within populations was low (1.91%, P < 0.001). Strong genetic differentiation was detected among populations (GST = 0.855, P < 0.001) with limited estimations of seed flow (Nm = 0.09), indicating that populations were strongly isolated from one another. According to SAMOVA analysis, populations of B. sinensis in China could be divided into five geographic groups: (1) eastern Yunnan to western Guangxi; (2) Guizhou-Hunan-Hubei; (3) central Guangdong; (4) northwestern Guangdong; and (5) the Luoxiao-Nanling-Wuyi -Yangming Mountain. Network analysis showed that the most ancestral haplotypes were located in the first group, i.e., the eastern Yungui Plateau and in eastern Yunnan, which is regarded as a putative glacial refugia for B. sinensis in China. B. sinensis may have expanded its range eastward from these refugia and experienced bottleneck or founder effects in southeastern China. Populations in Liping (Guizhou Province), Longsheng (Guangxi Province), Huizhou (Guangdong Province), Chongyi (Jiangxi Province), Dong-an (Hunan Province), Pingbian (Yunnan Province) and Xinning (Hunan Province) are proposed as the priority protection units.
Collapse
Affiliation(s)
- Mei-Na Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Qiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Zheng-Feng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, D.C., United States of America
| | - Zhong-Chao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
He J, Wang S, Li J, Fan Z, Liu X, Wang Y. Genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udensis. Ecol Evol 2017; 7:10243-10251. [PMID: 29238551 PMCID: PMC5723609 DOI: 10.1002/ece3.3510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 08/16/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Polyploidy is an important factor shaping the geographic range of a species. Clintonia udensis (Clintonia) is a primary perennial herb widely distributed in China with two karyotypic characteristics—diploid and tetraploid and thereby used to understand the ploidy and distribution. This study unraveled the patterns of genetic variation and spatiotemporal history among the cytotypes of C. udensis using simple sequence repeat or microsatellites. The results showed that the diploids and tetraploids showed the medium level of genetic differentiation; tetraploid was slightly lower than diploid in genetic diversity; recurrent polyploidization seems to have opened new possibilities for the local genotype; the spatiotemporal history of C. udensis allows tracing the interplay of polyploidy evolution; isolated and different ecological surroundings could act as evolutionary capacitors, preserve distinct karyological, and genetic diversity. The approaches of integrating genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udens would possibly provide a powerful way to understand the ploidy and plant distribution and undertaken in similar studies in other plant species simultaneously contained the diploid and tetraploid.
Collapse
Affiliation(s)
- Juan He
- College of Life Science Shanxi Normal University Linfen China
| | - Shengnan Wang
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Jia Li
- College of Life Science Shanxi Normal University Linfen China
| | - Zelu Fan
- College of Life Science Shanxi Normal University Linfen China
| | - Xin Liu
- College of Life Science Shanxi Normal University Linfen China
| | - Yiling Wang
- College of Life Science Shanxi Normal University Linfen China
| |
Collapse
|
4
|
Ye M, Liu W, Xue Q, Hou B, Luo J, Ding X. Phylogeography of the endangered orchid Dendrobium moniliforme in East Asia inferred from chloroplast DNA sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:880-891. [PMID: 27931140 DOI: 10.1080/24701394.2016.1202942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of the current study was to elucidate the phylogeographic history of Dendrobium moniliforme, an endangered orchid species, based on two chloroplast DNA (cpDNA) markers (trnC-petN and trnE-trnT). One hundred and thirty-five samples were collected from 18 natural populations of D. moniliforme covering the entire range of the Sino-Japanese Floristic Region (SJFR) of East Asia. A total of 35 distinct cpDNA haplotypes were identified in these populations, of which 23 haplotypes were each present in only one sample and thus restricted to a single population. The significantly larger NST value (0.586) than GST (0.328) (p < 0.05) demonstrated the presence of strong phylogeographic structure. Phylogenetic analyses indicated that all haplotypes were clustered into two lineages. The genetic diversity of D. moniliforme was high at the species level, reflected in its haplotype diversity (Hd=0.8862), nucleotide diversity (Pi=0.00361), total genetic diversity (HT=0.9011), and significant differentiation (ΦST=0.5482). Based on mismatch distribution analysis and neutrality tests, population expansion was evident in all sampled populations and also in all populations sampled in mainland China. Three refuge areas were identified, one each in southwestern China, central-southeastern China, and the CKJ (Taiwan, Japan and Korea) Islands. The results supported the hypothesis that glacial refugia were maintained on different spatial-temporal scales in the SJFR during the last glacial maximum or earlier cold periods, suggesting that Quaternary refugial isolation promoted allopatric speciation of D. moniliforme in East Asia.
Collapse
Affiliation(s)
- Meirong Ye
- a College of Life Sciences , Nanjing Normal University , Nanjing , China.,b College of Life Sciences , Anhui Science and Technology University , Fengyang , China
| | - Wei Liu
- a College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Qingyun Xue
- a College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Beiwei Hou
- c Nanjing Institute for Comprehensive Utilization of Wild Plants , Nanjing , China
| | - Jing Luo
- d College of Physical Sciences , Nanjing Normal University , Nanjing , China
| | - Xiaoyu Ding
- a College of Life Sciences , Nanjing Normal University , Nanjing , China
| |
Collapse
|
5
|
Du ZY, Wang QF. Allopatric divergence of Stuckenia filiformis (Potamogetonaceae) on the Qinghai-Tibet Plateau and its comparative phylogeography with S. pectinata in China. Sci Rep 2016; 6:20883. [PMID: 26864465 PMCID: PMC4750007 DOI: 10.1038/srep20883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
In the aquatic genus Stuckenia, the wide geographic range of S. pectinata and S. filiformis make them suited for examination of topographic and climatic effects on plant evolution. Using nuclear ITS sequence and ten chloroplast sequences, we conducted comparative phylogeographical analyses to investigate their distribution regions and hybrid zones in China, and compare their phylogeographical patterns and demographical histories. These two species were allopatric in China. S. filiformis occurred only on the Qinghai-Tibet Plateau (QTP), whereas S. pectinata occupied a wide range of habitats. These two species formed hybrid zones on the northeastern edge of QTP. Most of the genetic variance of S. filiformis was between the southern and eastern groups on the QTP, showing a significant phylogeographic structure. The geographical isolations caused by the Nyenchen Tanglha Mountains and the Tanggula Mountains promoted intraspecific diversification of alpine plants on the QTP. This study revealed the lack of phylogeographic structure in S. pectinata, due to the continued gene flow among its distribution regions. The ecological niche modeling showed that the distribution ranges of these two herbaceous species did not contract too much during the glacial period.
Collapse
Affiliation(s)
- Zhi-Yuan Du
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Hu ZM, Li JJ, Sun ZM, Oak JH, Zhang J, Fresia P, Grant WS, Duan DL. Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific. Mol Ecol 2016; 24:5020-33. [PMID: 26334439 DOI: 10.1111/mec.13367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/01/2023]
Abstract
A major goal of phylogeographic analysis using molecular markers is to understand the ecological and historical variables that influence genetic diversity within a species. Here, we used sequences of the mitochondrial Cox1 gene and nuclear internal transcribed spacer to reconstruct its phylogeography and demographic history of the intertidal red seaweed Chondrus ocellatus over most of its geographical range in the Northwest Pacific. We found three deeply separated lineages A, B and C, which diverged from one another in the early Pliocene-late Miocene (c. 4.5-7.7 Ma). The remarkably deep divergences, both within and between lineages, appear to have resulted from ancient isolations, accelerated by random drift and limited genetic exchange between regions. The disjunct distributions of lineages A and C along the coasts of Japan may reflect divergence during isolation in scattered refugia. The distribution of lineage B, from the South China Sea to the Korean Peninsula, appears to reflect postglacial recolonizations of coastal habitats. These three lineages do not coincide with the three documented morphological formae in C. ocellatus, suggesting that additional cryptic species may exist in this taxon. Our study illustrates the interaction of environmental variability and demographic processes in producing lineage diversification in an intertidal seaweed and highlights the importance of phylogeographic approaches for discovering cryptic marine biodiversity.
Collapse
Affiliation(s)
- Zi-Min Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jing-Jing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Min Sun
- Laboratory of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jung-Hyun Oak
- Department of Oceanography, Pusan National University, Pusan, 609-735, Korea
| | - Jie Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - W Stewart Grant
- Alaska Department of Fish and Game, Anchorage, AK, 99518, USA
| | - De-Lin Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Wang Y, Yan G. Molecular phylogeography and population genetic structure of O. longilobus and O. taihangensis (Opisthopappus) on the Taihang mountains. PLoS One 2014; 9:e104773. [PMID: 25148249 PMCID: PMC4141751 DOI: 10.1371/journal.pone.0104773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
Historic events such as the uplift of mountains and climatic oscillations in the Quaternary periods greatly affected the evolution and modern distribution of the flora. We sequenced the trnL–trnF, ndhJ-trnL and ITS from populations throughout the known distributions of O. longilobus and O. taihangensis to understand the evolutionary history and the divergence related to the past shifts of habitats in the Taihang Mountains regions. The results showed high genetic diversity and pronounced genetic differentiation among the populations of the two species with a significant phylogeographical pattern (NST>GST, P<0.05), which imply restricted gene flow among the populations and significant geographical or environmental isolation. Ten chloroplast DNA (cpDNA) and eighteen nucleus ribosome DNA (nrDNA) haplotypes were identified and clustered into two lineages. Two corresponding refuge areas were revealed across the entire distribution ranges of O. longilobus and at least three refuge areas for O. taihangensis. O. longilobus underwent an evolutionary historical process of long-distance dispersal and colonization, whereas O. taihangensis underwent a population expansion before the main uplift of Taihang Mountains. The differentiation time between O. longilobus and O. taihangensis is estimated to have occurred at the early Pleistocene. Physiographic complexity and paleovegetation transition of Taihang Mountains mainly shaped the specific formation and effected the present distribution of these two species. The results therefore support the inference that Quaternary refugial isolation promoted allopatric speciation in Taihang Mountains. This may help to explain the existence of high diversity and endemism of plant species in central/northern China.
Collapse
Affiliation(s)
- Yiling Wang
- College of Life Sciences, Shanxi Normal University, Linfen, China
| | - Guiqin Yan
- College of Life Sciences, Shanxi Normal University, Linfen, China
- * E-mail:
| |
Collapse
|
8
|
Zhao C, Wang CB, Ma XG, Liang QL, He XJ. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol Phylogenet Evol 2013; 68:628-43. [PMID: 23624194 DOI: 10.1016/j.ympev.2013.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 01/30/2013] [Accepted: 04/11/2013] [Indexed: 11/25/2022]
Abstract
This study investigates the influence of climate-induced oscillations and complicated geological conditions on the evolutionary processes responsible for species formation in presently fragmented temperate forest habitats, located in continental East Asia. In addition to this, we also investigate the heavily debated issue of whether temperate forests migrated southwards during such glacial periods or, alternatively, whether there existed refugia within north China, enabling localized survival of temperate forests within this region. In order to achieve these, we surveyed the phylogeography of Bupleurum longiradiatum Turcz. (a herbaceous plant solely confined to temperate forests) constructed from sequence variation in three chloroplast (cp) DNA fragments: trnL-trnF, psbA-trnH and rps16. Our analyses show high genetic diversity within species (h(T)=0.948) and pronounced genetic differentiation among groups (yellow and purple flowers) with a significant phylogeographical pattern (N(ST)>G(ST), P<0.05). Forty-three haplotypes were identified and clustered into two lineages (the purple-flowered lineage and the yellow-flowered lineage). Two corresponding refuge areas, one in Qinling and its adjacent regions and one in the Changbai Mountains/eastern China, were revealed across the entire distribution ranges of Bupleurum longiradiatum. These results provide evidence for the hypothesis that independent refugia were maintained across the range of temperate forests in northern China during the last glacial maximum or earlier cold periods. Bupleurum longiradiatum var. porphyranthum formed a single taxon based on molecular data. This specific formation process suggests that the historical vicariance factors, i.e. climate-induced eco-geographic isolation through the biotic displacement of temperate-deciduous forest habitats, enhanced the divergence of the yellow and purple flower lineages at different spatial-temporal scales and over glacial and interglacial periods. Additionally, geological conditions that restricted gene flow might also be responsible for the observed high genetic and geographic differentiation. A nested clade analysis (NCA) revealed that allopatric fragmentation was a major factor responsible for the phylogeographic pattern observed, and also supported a role for historical vicariance factors. Our results therefore support the inference that Quaternary refugial isolation promoted allopatric speciation of temperate plants in East Asia. This may help to explain the existence of high diversity and endemism of plant species in East Asia.
Collapse
Affiliation(s)
- Cai Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | | | | | | | | |
Collapse
|
9
|
Wang Y, Guo J, Zhao G. Chloroplast microsatellite diversity of Clintonia udensis (Liliaceae) populations in East Asia. BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2010.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|