1
|
Holvast EJ, Celik MA, Phillips MJ, Wilson LAB. Do morphometric data improve phylogenetic reconstruction? A systematic review and assessment. BMC Ecol Evol 2024; 24:127. [PMID: 39425066 PMCID: PMC11487705 DOI: 10.1186/s12862-024-02313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Isolating phylogenetic signal from morphological data is crucial for accurately merging fossils into the tree of life and for calibrating molecular dating. However, subjective character definition is a major limitation which can introduce biases that mislead phylogenetic inferences and divergence time estimation. The use of quantitative data, e.g., geometric morphometric (GMM; shape) data can allow for more objective integration of morphological data into phylogenetic inference. This systematic review describes the current state of the field in using continuous morphometric data (e.g., GMM data) for phylogenetic reconstruction and assesses the efficacy of these data compared to discrete characters using the PRISMA-EcoEvo v1.0. reporting guideline, and offers some pathways for approaching this task with GMM data. A comprehensive search string yielded 11,123 phylogenetic studies published in English up to Oct 2023 in the Web of Science database. Title and abstract screening removed 10,975 articles, and full-text screening was performed for 132 articles. Of these, a total of twelve articles met final inclusion criteria and were used for downstream analyses. RESULTS Phylogenetic performance was compared between approaches that employed continuous morphometric and discrete morphological data. Overall, the reconstructed phylogenies did not show increased resolution or accuracy (i.e., benchmarked against molecular phylogenies) as continuous data alone or combined with discrete morphological datasets. CONCLUSIONS An exhaustive search of the literature for existing empirical continuous data resulted in a total of twelve articles for final inclusion following title/abstract, and full-text screening. Our study was performed under a rigorous framework for systematic reviews, which showed that the lack of available comparisons between discrete and continuous data hinders our understanding of the performance of continuous data. Our study demonstrates the problem surrounding the efficacy of continuous data as remaining relatively intractable despite an exhaustive search, due in part to the difficulty in obtaining relevant comparisons from the literature. Thus, we implore researchers to address this issue with studies that collect discrete and continuous data sets with directly comparable properties (i.e., describing shape, or size).
Collapse
Affiliation(s)
- Emma J Holvast
- School of Archaeology and Anthropology, The Australian National University, Canberra, Australia.
| | - Mélina A Celik
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Canberra, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Research School of Physics, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
2
|
Bossert S, Murray EA, Pauly A, Chernyshov K, Brady SG, Danforth BN. Gene Tree Estimation Error with Ultraconserved Elements: An Empirical Study on Pseudapis Bees. Syst Biol 2020; 70:803-821. [PMID: 33367855 DOI: 10.1093/sysbio/syaa097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022] Open
Abstract
Summarizing individual gene trees to species phylogenies using two-step coalescent methods is now a standard strategy in the field of phylogenomics. However, practical implementations of summary methods suffer from gene tree estimation error, which is caused by various biological and analytical factors. Greatly understudied is the choice of gene tree inference method and downstream effects on species tree estimation for empirical data sets. To better understand the impact of this method choice on gene and species tree accuracy, we compare gene trees estimated through four widely used programs under different model-selection criteria: PhyloBayes, MrBayes, IQ-Tree, and RAxML. We study their performance in the phylogenomic framework of $>$800 ultraconserved elements from the bee subfamily Nomiinae (Halictidae). Our taxon sampling focuses on the genus Pseudapis, a distinct lineage with diverse morphological features, but contentious morphology-based taxonomic classifications and no molecular phylogenetic guidance. We approximate topological accuracy of gene trees by assessing their ability to recover two uncontroversial, monophyletic groups, and compare branch lengths of individual trees using the stemminess metric (the relative length of internal branches). We further examine different strategies of removing uninformative loci and the collapsing of weakly supported nodes into polytomies. We then summarize gene trees with ASTRAL and compare resulting species phylogenies, including comparisons to concatenation-based estimates. Gene trees obtained with the reversible jump model search in MrBayes were most concordant on average and all Bayesian methods yielded gene trees with better stemminess values. The only gene tree estimation approach whose ASTRAL summary trees consistently produced the most likely correct topology, however, was IQ-Tree with automated model designation (ModelFinder program). We discuss these findings and provide practical advice on gene tree estimation for summary methods. Lastly, we establish the first phylogeny-informed classification for Pseudapis s. l. and map the distribution of distinct morphological features of the group. [ASTRAL; Bees; concordance; gene tree estimation error; IQ-Tree; MrBayes, Nomiinae; PhyloBayes; RAxML; phylogenomics; stemminess].
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.,Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| | - Elizabeth A Murray
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.,Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| | - Alain Pauly
- O.D. Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium
| | - Kyrylo Chernyshov
- College of Arts and Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Kjer KM, Simon C, Yavorskaya M, Beutel RG. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J R Soc Interface 2016; 13:20160363. [PMID: 27558853 PMCID: PMC5014063 DOI: 10.1098/rsif.2016.0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985-2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed.
Collapse
Affiliation(s)
- Karl M Kjer
- Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Margarita Yavorskaya
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Song F, Li H, Jiang P, Zhou X, Liu J, Sun C, Vogler AP, Cai W. Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models. Genome Biol Evol 2016; 8:1411-26. [PMID: 27189999 PMCID: PMC4898802 DOI: 10.1093/gbe/evw086] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mitochondrial genome data. The main reasons have been the absence of sufficient data in several orders and lack of appropriate phylogenetic methods that avoid the systematic errors from compositional and mutational biases in insect mitochondrial genomes. In this study, we assembled the richest taxon sampling of Holometabola to date (199 species in 11 orders), and analyzed both nucleotide and amino acid data sets using several methods. We find the standard Bayesian inference and maximum-likelihood analyses were strongly affected by systematic biases, but the site-heterogeneous mixture model implemented in PhyloBayes avoided the false grouping of unrelated taxa exhibiting similar base composition and accelerated evolutionary rate. The inclusion of rRNA genes and removal of fast-evolving sites with the observed variability sorting method for identifying sites deviating from the mean rates improved the phylogenetic inferences under a site-heterogeneous model, correctly recovering most deep branches of the Holometabola phylogeny. We suggest that the use of mitochondrial genome data for resolving deep phylogenetic relationships requires an assessment of the potential impact of substitutional saturation and compositional biases through data deletion strategies and by using site-heterogeneous mixture models. Our study suggests a practical approach for how to use densely sampled mitochondrial genome data in phylogenetic analyses.
Collapse
Affiliation(s)
- Fan Song
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pei Jiang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington
| | - Changhai Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alfried P Vogler
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Garcia DA, Lasso CA, Morales M, Caballero SJ. Molecular systematics of the freshwater stingrays (myliobatiformes: potamotrygonidae) of the Amazon, Orinoco, Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia - Venezuela): evidence from three mitochondrial genes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4479-4491. [PMID: 26702899 DOI: 10.3109/19401736.2015.1101536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lack of adequate information about the taxonomic and evolutionary relationships, ecology, biology, and distribution of several species belonging to the family Potamotrygonidae makes these species vulnerable to anthropic activities, including commercial overexploitation for the ornamental fish market. The aim of this study was to investigate the systematic relationships among genera and species belonging to this family by analyses of three mitochondrial gene regions. Samples were collected from the main river basins in Colombia and Venezuela for four genera and seven species of the family, as well as for what appear to be unidentified species. Three mitochondrial molecular markers COI, Cytb, and ATP6 were amplified and sequenced. Maximum likelihood and Bayesian inference analysis were performed to obtain topologies for each marker and for a concatenated dataset including the three genes. Small dataset may compromise some methods estimations of sequence divergence in the ATP6 marker. Monophyly of the four genera in Potamotrygonidae was confirmed and phylogenetic relationships among members of the Potamotrygon genus were not clearly resolved. However, results obtained with the molecular marker Cytb appear to offer a good starting point to differentiate among genera and species as a tool that could be used for barcoding. The application of this gene as a barcode could be applied for management and regulation of extraction practices for these genera. Sequencing complete mitochondrial genomes would be the next step for testing evolutionary hypothesis among these genera. Population structure analyses should be undertaken for Paratrygon, Potamotrygon magdalenae and motoro.
Collapse
Affiliation(s)
- David Alejandro Garcia
- a Laboratorio De Ecología Molecular De Vertebrados Acuáticos , Universidad De Los Andes , Bogota , Colombia and
| | - Carlos Andres Lasso
- b Instituto De Investigación De Recursos Biológicos Alexander Von Humboldt , Bogota , Colombia
| | - Monica Morales
- b Instituto De Investigación De Recursos Biológicos Alexander Von Humboldt , Bogota , Colombia
| | - Susana Josefina Caballero
- a Laboratorio De Ecología Molecular De Vertebrados Acuáticos , Universidad De Los Andes , Bogota , Colombia and
| |
Collapse
|
6
|
Boussau B, Walton Z, Delgado JA, Collantes F, Beani L, Stewart IJ, Cameron SA, Whitfield JB, Johnston JS, Holland PW, Bachtrog D, Kathirithamby J, Huelsenbeck JP. Strepsiptera, phylogenomics and the long branch attraction problem. PLoS One 2014; 9:e107709. [PMID: 25272037 PMCID: PMC4182670 DOI: 10.1371/journal.pone.0107709] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022] Open
Abstract
Insect phylogeny has recently been the focus of renewed interest as advances in sequencing techniques make it possible to rapidly generate large amounts of genomic or transcriptomic data for a species of interest. However, large numbers of markers are not sufficient to guarantee accurate phylogenetic reconstruction, and the choice of the model of sequence evolution as well as adequate taxonomic sampling are as important for phylogenomic studies as they are for single-gene phylogenies. Recently, the sequence of the genome of a strepsipteran has been published and used to place Strepsiptera as sister group to Coleoptera. However, this conclusion relied on a data set that did not include representatives of Neuropterida or of coleopteran lineages formerly proposed to be related to Strepsiptera. Furthermore, it did not use models that are robust against the long branch attraction artifact. Here we have sequenced the transcriptomes of seven key species to complete a data set comprising 36 species to study the higher level phylogeny of insects, with a particular focus on Neuropteroidea (Coleoptera, Strepsiptera, Neuropterida), especially on coleopteran taxa considered as potential close relatives of Strepsiptera. Using models robust against the long branch attraction artifact we find a highly resolved phylogeny that confirms the position of Strepsiptera as a sister group to Coleoptera, rather than as an internal clade of Coleoptera, and sheds new light onto the phylogeny of Neuropteroidea.
Collapse
Affiliation(s)
- Bastien Boussau
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Zaak Walton
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | - Juan A. Delgado
- Departamento de Zoologia y Antropologia Fisica, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Francisco Collantes
- Departamento de Zoologia y Antropologia Fisica, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Laura Beani
- Dipartimento di Biologia, Università di Firenze, Sesto Fiorentino, Firenze, Italia
| | - Isaac J. Stewart
- Fisher High School, Fisher, IL, United States of America
- Department of Entomology, University of Illinois, Urbana, IL, United States of America
| | - Sydney A. Cameron
- Department of Entomology, University of Illinois, Urbana, IL, United States of America
| | - James B. Whitfield
- Department of Entomology, University of Illinois, Urbana, IL, United States of America
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Peter W.H. Holland
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | | | - John P. Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
The spermatozoon of Mengenilla moldrzyki (Strepsiptera, Mengenillidae): Ultrastructure and phylogenetic considerations. Tissue Cell 2013; 45:446-51. [DOI: 10.1016/j.tice.2013.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 11/21/2022]
|
8
|
Simon S, Hadrys H. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol 2013; 69:393-403. [DOI: 10.1016/j.ympev.2013.03.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/13/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
9
|
Nardi JB, Delgado JA, Collantes F, Miller LA, Bee CM, Kathirithamby J. Sperm Cells of a Primitive Strepsipteran. INSECTS 2013; 4:463-75. [PMID: 26462430 PMCID: PMC4553476 DOI: 10.3390/insects4030463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/07/2013] [Accepted: 08/15/2013] [Indexed: 12/02/2022]
Abstract
The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera-the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects' sperm cells along with specific ultrastructural features of their organelles.
Collapse
Affiliation(s)
- James B Nardi
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | - Juan A Delgado
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Francisco Collantes
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Lou Ann Miller
- Biological Electron Microscopy, Frederick Seitz Materials Research Laboratory, Room 125, University of Illinois, 104 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Charles M Bee
- Imaging Technology Group, Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
10
|
Wang Y, Engel MS, Rafael JA, Dang K, Wu H, Wang Y, Xie Q, Bu W. A unique box in 28S rRNA is shared by the enigmatic insect order Zoraptera and Dictyoptera. PLoS One 2013; 8:e53679. [PMID: 23301099 PMCID: PMC3536744 DOI: 10.1371/journal.pone.0053679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/03/2012] [Indexed: 01/30/2023] Open
Abstract
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages.
Collapse
Affiliation(s)
- Yanhui Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Michael S. Engel
- Division of Entomology (Paleoentomology), Natural History Museum, London, England
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jose A. Rafael
- Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Amazonas, Brazil
| | - Kai Dang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haoyang Wu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Xie
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Abstract
The classification of insects has attempted to most effectively communicate information about this hyperdiverse lineage of life and, not surprisingly, has had a considerably rich historical development. This history can be coarsely segregated into four periods: the Pre-Linnean era, the first century spanning Linnaeus's Systema Naturae to Darwin's On the Origin of Species, the Darwinian era up to the Cladistic Revolution, and the Hennigian era leading to today. The major events of each of these episodes are briefly summarized and some of the more notable researchers highlighted, along with their influence on our current understanding of insect relationships and how this is reflected in the current classification of the Hexapoda.
Collapse
Affiliation(s)
- Michael S Engel
- Division of Entomology, Natural History Museum, Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
12
|
Cvačka J, Jiroš P, Kalinová B, Straka J, Černá K, Šebesta P, Tomčala A, Vašíčková S, Jahn U, Šobotník J. Stylopsal: The First Identified Female-produced Sex Pheromone of Strepsiptera. J Chem Ecol 2012; 38:1483-91. [DOI: 10.1007/s10886-012-0214-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/23/2012] [Accepted: 10/27/2012] [Indexed: 10/27/2022]
|
13
|
Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, Donath A, Krauss V, Eisenhardt C, Hertel J, Petersen M, Mayer C, Meusemann K, Peters RS, Stadler PF, Beutel RG, Bornberg-Bauer E, McKenna DD, Misof B. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Curr Biol 2012; 22:1309-13. [PMID: 22704986 DOI: 10.1016/j.cub.2012.05.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 01/31/2023]
Abstract
The phylogeny of insects, one of the most spectacular radiations of life on earth, has received considerable attention. However, the evolutionary roots of one intriguing group of insects, the twisted-wing parasites (Strepsiptera), remain unclear despite centuries of study and debate. Strepsiptera exhibit exceptional larval developmental features, consistent with a predicted step from direct (hemimetabolous) larval development to complete metamorphosis that could have set the stage for the spectacular radiation of metamorphic (holometabolous) insects. Here we report the sequencing of a Strepsiptera genome and show that the analysis of sequence-based genomic data (comprising more than 18 million nucleotides from nearly 4,500 genes obtained from a total of 13 insect genomes), along with genomic metacharacters, clarifies the phylogenetic origin of Strepsiptera and sheds light on the evolution of holometabolous insect development. Our results provide overwhelming support for Strepsiptera as the closest living relatives of beetles (Coleoptera). They demonstrate that the larval developmental features of Strepsiptera, reminiscent of those of hemimetabolous insects, are the result of convergence. Our analyses solve the long-standing enigma of the evolutionary roots of Strepsiptera and reveal that the holometabolous mode of insect development is more malleable than previously thought.
Collapse
Affiliation(s)
- Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yeates DK, Cameron SL, Trautwein M. A view from the edge of the forest: recent progress in understanding the relationships of the insect orders. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1440-6055.2012.00857.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK. Advances in insect phylogeny at the dawn of the postgenomic era. ANNUAL REVIEW OF ENTOMOLOGY 2012; 57:449-468. [PMID: 22149269 DOI: 10.1146/annurev-ento-120710-100538] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Most species on Earth are insects and thus, understanding their evolutionary relationships is key to understanding the evolution of life. Insect relationships are increasingly well supported, due largely to technological advances in molecular sequencing and phylogenetic computational analysis. In this postgenomic era, insect systematics will be furthered best by integrative methods aimed at hypothesis corroboration from molecular, morphological, and paleontological evidence. This review of the current consensus of insect relationships provides a foundation for comparative study and offers a framework to evaluate incoming genomic evidence. Notable recent phylogenetic successes include the resolution of Holometabola, including the identification of the enigmatic Strepsiptera as a beetle relative and the early divergence of Hymenoptera; the recognition of hexapods as a crustacean lineage within Pancrustacea; and the elucidation of Dictyoptera orders, with termites placed as social cockroaches. Regions of the tree that require further investigation include the earliest winged insects (Palaeoptera) and Polyneoptera (orthopteroid lineages).
Collapse
Affiliation(s)
- Michelle D Trautwein
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | |
Collapse
|
16
|
Simon S, Narechania A, Desalle R, Hadrys H. Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biol Evol 2012; 4:1295-309. [PMID: 23175716 PMCID: PMC3542558 DOI: 10.1093/gbe/evs104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/13/2022] Open
Abstract
The evolution of the diverse insect lineages is one of the most fascinating issues in evolutionary biology. Despite extensive research in this area, the resolution of insect phylogeny especially of interordinal relationships has turned out to be still a great challenge. One of the challenges for insect systematics is the radiation of the polyneopteran lineages with several contradictory and/or unresolved relationships. Here, we provide the first transcriptomic data for three enigmatic polyneopteran orders (Dermaptera, Plecoptera, and Zoraptera) to clarify one of the most debated issues among higher insect systematics. We applied different approaches to generate 3 data sets comprising 78 species and 1,579 clusters of orthologous genes. Using these three matrices, we explored several key mechanistic problems of phylogenetic reconstruction including missing data, matrix selection, gene and taxa number/choice, and the biological function of the genes. Based on the first phylogenomic approach including these three ambiguous polyneopteran orders, we provide here conclusive support for monophyletic Polyneoptera, contesting the hypothesis of Zoraptera + Paraneoptera and Plecoptera + remaining Neoptera. In addition, we employ various approaches to evaluate data quality and highlight problematic nodes within the Insect Tree that still exist despite our phylogenomic approach. We further show how the support for these nodes or alternative hypotheses might depend on the taxon- and/or gene-sampling.
Collapse
Affiliation(s)
- Sabrina Simon
- ITZ, Ecology & Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|
17
|
Talavera G, Vila R. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol 2011; 11:315. [PMID: 22032248 PMCID: PMC3213125 DOI: 10.1186/1471-2148-11-315] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. RESULTS Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. CONCLUSION We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| |
Collapse
|
18
|
McMahon DP, Hayward A, Kathirithamby J. The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism. PLoS One 2011; 6:e21206. [PMID: 21738621 PMCID: PMC3125182 DOI: 10.1371/journal.pone.0021206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/23/2011] [Indexed: 11/18/2022] Open
Abstract
A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role.
Collapse
Affiliation(s)
- Dino P. McMahon
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
19
|
Jordal BH, Sequeira AS, Cognato AI. The age and phylogeny of wood boring weevils and the origin of subsociality. Mol Phylogenet Evol 2011; 59:708-24. [PMID: 21435394 DOI: 10.1016/j.ympev.2011.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/20/2011] [Accepted: 03/12/2011] [Indexed: 01/18/2023]
Abstract
A large proportion of the hyperdiverse weevils are wood boring and many of these taxa have subsocial family structures. The origin and relationship between certain wood boring weevil taxa has been problematic to solve and hypotheses on their phylogenies change substantially between different studies. We aimed at testing the phylogenetic position and monophyly of the most prominent wood boring taxa Scolytinae, Platypodinae and Cossoninae, including a range of weevil outgroups with either the herbivorous or wood boring habit. Many putatively intergrading taxa were included in a broad phylogenetic analysis for the first time in this study, such as Schedlarius, Mecopelmus, Coptonotus, Dactylipalpus, Coptocorynus and allied Araucariini taxa, Dobionus, Psepholax, Amorphocerus-Porthetes, and some peculiar wood boring Conoderini with bark beetle behaviour. Data analyses were based on 128 morphological characters, rDNA nucleotides from the D2-D3 segment of 28S, and nucleotides and amino acids from the protein encoding gene fragments of CAD, ArgK, EF-1α and COI. Although the results varied for some of the groups between various data sets and analyses, one may conclude the following from this study: Scolytinae and Platypodinae are likely sister lineages most closely related to Coptonotus; Cossoninae is monophyletic (including Araucariini) and more distantly related to Scolytinae; Amorphocerini is not part of Cossoninae and Psepholax may belong to Cryptorhynchini. Likelihood estimation of ancestral state reconstruction of subsociality indicated five or six origins as a conservative estimate. Overall the phylogenetic results were quite dependent on morphological data and we conclude that more genetic loci must be sampled to improve phylogenetic resolution. However, some results such as the derived position of Scolytinae were consistent between morphological and molecular data. A revised time estimation of the origin of Curculionidae and various subfamily groups were made using the recently updated fossil age of Scolytinae (100 Ma), which had a significant influence on node age estimates.
Collapse
Affiliation(s)
- Bjarte H Jordal
- Natural History Collections, Bergen Museum, University of Bergen, NO-5020 Bergen, Norway
| | | | | |
Collapse
|
20
|
Gontijo AM, Miguela V, Whiting MF, Woodruff RC, Dominguez M. Intron retention in the Drosophila melanogaster Rieske Iron Sulphur Protein gene generated a new protein. Nat Commun 2011; 2:323. [PMID: 21610726 PMCID: PMC3113295 DOI: 10.1038/ncomms1328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/27/2011] [Indexed: 11/09/2022] Open
Abstract
Genomes can encode a variety of proteins with unrelated architectures and activities. It is known that protein-coding genes of de novo origin have significantly contributed to this diversity. However, the molecular mechanisms and evolutionary processes behind these originations are still poorly understood. Here we show that the last 102 codons of a novel gene, Noble, assembled directly from non-coding DNA following an intronic deletion that induced alternative intron retention at the Drosophila melanogaster Rieske Iron Sulphur Protein (RFeSP) locus. A systematic analysis of the evolutionary processes behind the origin of Noble showed that its emergence was strongly biased by natural selection on and around the RFeSP locus. Noble mRNA is shown to encode a bona fide protein that lacks an iron sulphur domain and localizes to mitochondria. Together, these results demonstrate the generation of a novel protein at a naturally selected site.
Collapse
Affiliation(s)
- Alisson M Gontijo
- Instituto de Neurociencias de Alicante, CSIC-UMH, Sant Joan d'Alacant, Alicante 03550, Spain.
| | | | | | | | | |
Collapse
|
21
|
Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su ZH. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 2010; 58:169-80. [PMID: 21075208 DOI: 10.1016/j.ympev.2010.11.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 10/20/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects.
Collapse
Affiliation(s)
- Keisuke Ishiwata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
22
|
Timmermans MJTN, Dodsworth S, Culverwell CL, Bocak L, Ahrens D, Littlewood DTJ, Pons J, Vogler AP. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 2010; 38:e197. [PMID: 20876691 PMCID: PMC2995086 DOI: 10.1093/nar/gkq807] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/29/2010] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.
Collapse
Affiliation(s)
- M. J. T. N. Timmermans
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - S. Dodsworth
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - C. L. Culverwell
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - L. Bocak
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - D. Ahrens
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - D. T. J. Littlewood
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - J. Pons
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| | - A. P. Vogler
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK, Department of Zoology, Science Faculty, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK and IMEDEA (CSIC-UIB), Miquel Marqués, 21 Esporlas, 07190 Illes Balears, Spain
| |
Collapse
|
23
|
McKenna DD, Farrell BD. 9-genes reinforce the phylogeny of holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS One 2010; 5:e11887. [PMID: 20686704 PMCID: PMC2912379 DOI: 10.1371/journal.pone.0011887] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The extraordinary morphology, reproductive and developmental biology, and behavioral ecology of twisted wing parasites (order Strepsiptera) have puzzled biologists for centuries. Even today, the phylogenetic position of these enigmatic "insects from outer space" [1] remains uncertain and contentious. Recent authors have argued for the placement of Strepsiptera within or as a close relative of beetles (order Coleoptera), as sister group of flies (order Diptera), or even outside of Holometabola. METHODOLOGY/PRINCIPAL FINDINGS Here, we combine data from several recent studies with new data (for a total of 9 nuclear genes and approximately 13 kb of aligned data for 34 taxa), to help clarify the phylogenetic placement of Strepsiptera. Our results unequivocally support the monophyly of Neuropteroidea (=Neuropterida+Coleoptera)+Strepsiptera, but recover Strepsiptera either derived from within polyphagan beetles (order Coleoptera), or in a position sister to Neuropterida. All other supra-ordinal- and ordinal-level relationships recovered with strong nodal support were consistent with most other recent studies. CONCLUSIONS/SIGNIFICANCE These results, coupled with the recent proposed placement of Strepsiptera sister to Coleoptera, suggest that while the phylogenetic neighborhood of Strepsiptera has been identified, unequivocal placement to a specific branch within Neuropteroidea will require additional study.
Collapse
Affiliation(s)
- Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America.
| | | |
Collapse
|