1
|
Sato S, Derkarabetian S, Lord A, Giribet G. An ultraconserved element probe set for velvet worms (Onychophora). Mol Phylogenet Evol 2024; 197:108115. [PMID: 38810901 DOI: 10.1016/j.ympev.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/04/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Onychophora are cryptic, soil-dwelling invertebrates known for their biogeographic affinities, diversity of reproductive modes, close phylogenetic relationship to arthropods, and peculiar prey capture mechanism. The 216 valid species of Onychophora are grouped into two families - Peripatopsidae and Peripatidae - and apart from a few relationships among major lineages within these two families, a stable phylogenetic backbone for the phylum has yet to be resolved. This has hindered our understanding of onychophoran biogeographic patterns, evolutionary history, and systematics. Neopatida, the Neotropical clade of peripatids, has proved particularly difficult, with recalcitrant nodes and low resolution, potentially due to rapid radiation of the group during the Cretaceous. Previous studies have had to compromise between number of loci and number of taxa due to limitations of Sanger sequencing and phylotranscriptomics, respectively. Additionally, aspects of their genome size and structure have made molecular phylogenetics difficult and data matrices have been affected by missing data. To address these issues, we leveraged recent, published transcriptomes and the first high quality genome for the phylum and designed a high affinity ultraconserved element (UCE) probe set for Onychophora. This new probe set, consisting of ∼ 20,000 probes that target 1,465 loci across both families, has high locus recovery and phylogenetic utility. Phylogenetic analyses recovered the monophyly of major clades of Onychophora and revealed a novel lineage from the Neotropics that challenges our current understanding of onychophoran biogeographic endemicity. This new resource could drastically increase the power of molecular datasets and potentially allow access to genomic scale data from archival museum specimens to further tackle the issues exasperating onychophoran systematics.
Collapse
Affiliation(s)
- Shoyo Sato
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark(1).
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; San Diego Natural History Museum, Department of Entomology, San Diego, CA, USA(1)
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Oliveira IDS. An updated world checklist of velvet worms (Onychophora) with notes on nomenclature and status of names. Zookeys 2023; 1184:133-260. [PMID: 38023768 PMCID: PMC10680090 DOI: 10.3897/zookeys.1184.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023] Open
Abstract
More than a decade has passed since the publication of the only world checklist available for Onychophora. During this period, numerous nomenclatural acts and taxonomic changes have been suggested within the group and a wealth of novel data has been published on many taxa. Herein, the up-to-date taxonomic scenario within Onychophora is presented, with appraisal of name status. This checklist covers both extant (Peripatidae and Peripatopsidae) and fossil taxa, and each species is accompanied by information on synonyms, type designation, holotype location, type locality, and language of original description. Additional remarks include nomenclatural inconsistencies, synonymizations, name misspellings, conflicting collecting event data, availability of taxonomically informative molecular data, etc. According to the data, 237 species are currently assigned to Onychophora: 140 of Peripatopsidae, 92 of Peripatidae, and five fossil species with unclear relationship to extant taxa. Since the previous checklist, 37 species have been added to Onychophora, representing an increase of 18.5% in the diversity described for the group. Yet, taxonomic descriptions seem slow-paced, with an average of 3.6 onychophoran species being described annually. From the taxonomic standpoint, 216 species are valid, although many of them require morphological revision and molecular characterization; 21 species exhibit major taxonomic ambiguities and have been regarded as nomina dubia. Recurrent taxonomic issues identified in the literature include inaccurate collecting event data, doubtful taxonomic assignment of molecular sequences, and non-observance of nomenclatural rules. These and other taxonomic aspects are addressed herein in the light of the directives established by the International Code of Zoological Nomenclature.
Collapse
Affiliation(s)
- Ivo de Sena Oliveira
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, GermanyUniversity of KasselKasselGermany
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, BrazilUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
3
|
Wu J, Xu D, Wei X, Liao W, Li X, Zhuo Z. Characterization of the complete mitochondrial genome of the longhorn beetle, Batocerahorsfieldi (Coleoptera, Cerambycidae) and its phylogenetic analysis with suitable longhorn beetles. Zookeys 2023; 1168:387-402. [PMID: 37448482 PMCID: PMC10336557 DOI: 10.3897/zookeys.1168.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial genome analysis is an important tool for studying insect phylogenetics. The longhorn beetle, Batocerahorsfieldi, is a significant pest in timber, economic and protection forests. This study determined the mitochondrial genome of B.horsfieldi and compared it with the mitochondrial genomes of other Cerambycidae with the aim of exploring the phylogenetic status of the pest and the evolutionary relationships among some Cerambycidae subgroups. The complete mitochondrial genome of B.horsfieldi was sequenced by the Illumina HiSeq platform. The mitochondrial genome was aligned and compared with the existing mitochondrial genomes of Batoceralineolata and B.rubus in GenBank (MF521888, MW629558, OM161963, respectively). The secondary structure of transfer RNA (tRNA) was predicted using tRNAScan-SE server v.1.21 and MITOS WebSever. Thirteen protein-coding genes (PCGs) and two ribosomal RNA gene sequences of 21 longhorn beetles, including B.horsfieldi, plus two outgroups, Dryopsernesti (Dryopidae) and Heterocerusparallelus (Heteroceridae), were analyzed. The phylogenetic tree was constructed using maximum likelihood and Bayesian inference methods. In this study, we successfully obtained the complete mitochondrial genome of B.horsfieldi for the first time, which is 15 425 bp in length. It contains 37 genes and an A + T-rich region, arranged in the same order as the recognized ancestor of longhorn beetles. The genome of B.horsfieldi is composed of 33.12% A bases, 41.64% T bases, 12.08% C bases, and 13.16% G bases. The structure, nucleotide composition, and codon usage of the new mitochondrial genome are not significantly different from other longhorn mitochondrial genomes. Phylogenetic analyses revealed that Cerambycidae formed a highly supported single clade, and Vesperidae was either clustered with Cerambycidae or formed a separate clade. Interestingly, B.horsfieldi, B.rubus and B.lineolata were clustered with Monochamus and Anoplophora species in both analyses, with high node support. Additionally, the VesperidaeSpiniphilusspinicornis and Vesperussanzi and the 19 Cerambycidae species formed a sister clade in the Bayesian analysis. Our results have produced new complete mitogenomic data, which will provide information for future phylogenetic and taxonomic research, and provide a foundation for future relevant research.
Collapse
Affiliation(s)
- Junhao Wu
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Xinju Wei
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Wenkai Liao
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Xiushan Li
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| |
Collapse
|
4
|
Nie RE, Gao RR, Yang XK, Lin MY. Complete mitochondrial genome of Distenia punctulatoides (Coleoptera: Chrysomeloidea: Disteniinae) and its phylogenetic implications. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21966. [PMID: 36106458 DOI: 10.1002/arch.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The family Disteniidae is a moderately large and widely distributed lineage. Distenia punctulatoides belongs to the family Disteniidae from the cerambycoid assemblage. Here, we report the complete mitogenome of D. punctulatoides, which is 15,675 bp in length. It contains 37 genes and a noncoding control region, which are arranged in the same order as that of the putative ancestor of beetles. The total base composition of the new mitogenome is 40.2% for A, 17.1% for C, 10.0% for G, and 32.7% for T. The new mitogenomic organization, nucleotide composition, and codon usage do not differ significantly from other beetles. Using available complete mitogenomes, the high-level phylogeny of the family Disteniidae was explored. The phylogenetic analyses showed that Disteniidae were monophyletic, and the genus Distenia grouped with the genus Clytomelegena as sister groups. Combining the morphological and molecular data, Typodryas Thomson, 1864 is suggested to be a junior synonym of Distenia Lepeletier and Audinet-Serville, 1828.
Collapse
Affiliation(s)
- Ruie E Nie
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong-Rong Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xing-Ke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mei-Ying Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Sichuan, China
| |
Collapse
|
5
|
Inverted base composition skews and discontinuous mitochondrial genome architecture evolution in the Enoplea (Nematoda). BMC Genomics 2022; 23:376. [PMID: 35585506 PMCID: PMC9115964 DOI: 10.1186/s12864-022-08607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Within the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes. Results P. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture. Conclusions Longidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08607-4.
Collapse
|
6
|
Baker CM, Buckman-Young RS, Costa CS, Giribet G. Phylogenomic Analysis of Velvet Worms (Onychophora) Uncovers an Evolutionary Radiation in the Neotropics. Mol Biol Evol 2021; 38:5391-5404. [PMID: 34427671 PMCID: PMC8662635 DOI: 10.1093/molbev/msab251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Onychophora ("velvet worms") are charismatic soil invertebrates known for their status as a "living fossil," their phylogenetic affiliation to arthropods, and their distinctive biogeographic patterns. However, several aspects of their internal phylogenetic relationships remain unresolved, limiting our understanding of the group's evolutionary history, particularly with regard to changes in reproductive mode and dispersal ability. To address these gaps, we used RNA sequencing and phylogenomic analysis of transcriptomes to reconstruct the evolutionary relationships and infer divergence times within the phylum. We recovered a fully resolved and well-supported phylogeny for the circum-Antarctic family Peripatopsidae, which retains signals of Gondwanan vicariance and showcases the evolutionary lability of reproductive mode in the family. Within the Neotropical clade of Peripatidae, though, we found that amino acid-translated sequence data masked nearly all phylogenetic signal, resulting in highly unstable and poorly supported relationships. Analyses using nucleotide sequence data were able to resolve many more relationships, though we still saw discordant phylogenetic signal between genes, probably indicative of a rapid, mid-Cretaceous radiation in the group. Finally, we hypothesize that the unique reproductive mode of placentotrophic viviparity found in all Neotropical peripatids may have facilitated the multiple inferred instances of over-water dispersal and establishment on oceanic islands.
Collapse
Affiliation(s)
- Caitlin M Baker
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Rebecca S Buckman-Young
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cristiano S Costa
- Laboratório de Sistemática e Taxonomia de Artrópodes Terrestres, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Martinez-Villegas L, Assis-Geraldo J, Koerich LB, Collier TC, Lee Y, Main BJ, Rodrigues NB, Orfano AS, Pires ACAM, Campolina TB, Nacif-Pimenta R, Baia-da-Silva DC, Duarte APM, Bahia AC, Rios-Velásquez CM, Lacerda MVG, Monteiro WM, Lanzaro GC, Secundino NFC, Pimenta PFP. Characterization of the complete mitogenome of Anopheles aquasalis, and phylogenetic divergences among Anopheles from diverse geographic zones. PLoS One 2019; 14:e0219523. [PMID: 31479460 PMCID: PMC6720026 DOI: 10.1371/journal.pone.0219523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022] Open
Abstract
Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79–100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Juliana Assis-Geraldo
- Biosystems Informatics and Genomics Group, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Leonardo B Koerich
- Laboratory of Physiology of Haematophagous Insects, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Travis C Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture, Agricultural Research Service, Hilo, Hawaii, United States of America
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Bradley J Main
- Davis Arbovirus Research and Training, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Nilton B Rodrigues
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Alessandra S Orfano
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Ana C A M Pires
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Thais B Campolina
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Djane C Baia-da-Silva
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Ana P M Duarte
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Ana C Bahia
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcus V G Lacerda
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Institute Leonidas and Maria Deane, Oswaldo Cruz Foundation, FIOCRUZ, Manaus, AM, Brazil
| | - Wuelton M Monteiro
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Nagila F C Secundino
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Paulo F P Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| |
Collapse
|
8
|
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J Biosci 2018. [DOI: 10.1007/s12038-018-9741-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Giribet G, Edgecombe GD. Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships. Integr Comp Biol 2017; 57:455-466. [DOI: 10.1093/icb/icx072] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes. Genetica 2017; 145:431-440. [PMID: 28791584 DOI: 10.1007/s10709-017-9978-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.
Collapse
|
11
|
Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals. PLoS One 2016; 11:e0165072. [PMID: 27755612 PMCID: PMC5068742 DOI: 10.1371/journal.pone.0165072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.
Collapse
|
12
|
Shen H, Braband A, Scholtz G. The complete mitogenomes of lobsters and crayfish (Crustacea: Decapoda: Astacidea) reveal surprising differences in closely related taxa and convergences to Priapulida. J ZOOL SYST EVOL RES 2015. [DOI: 10.1111/jzs.12106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hong Shen
- Institut für Biologie/Vergleichende Zoologie; Humboldt-Universität zu Berlin; Berlin Germany
| | - Anke Braband
- Institut für Biologie/Vergleichende Zoologie; Humboldt-Universität zu Berlin; Berlin Germany
| | - Gerhard Scholtz
- Institut für Biologie/Vergleichende Zoologie; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
13
|
Zou Y, Jing MD, Bi XX, Zhang T, Huang L. The complete mitochondrial genome sequence of the little egret (Egretta garzetta). Genet Mol Biol 2015; 38:162-72. [PMID: 26273219 PMCID: PMC4530654 DOI: 10.1590/s1415-4757382220140203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022] Open
Abstract
Many phylogenetic questions in the Ciconiiformes remain unresolved and complete mitogenome data are urgently needed for further molecular investigation. In this work, we determined the complete mitogenome sequence of the little egret (Egretta garzetta). The genome was 17,361 bp in length and the gene organization was typical of other avian mtDNA. In protein-coding genes (PCGs), a C insertion was found in ND3, and COIII and ND4 terminated with incomplete stop codons (T). tRNA-Val and tRNA-Ser (AGY) were unable to fold into canonical cloverleaf secondary structures because they had lost the DHU arms. Long repetitive sequences consisting of five types of tandem repeats were found at the 3' end of Domain III in the control region. A phylogenetic analysis of 11 species of Ciconiiformes was done using complete mitogenome data and 12 PCGs. The tree topologies obtained with these two strategies were identical, which strongly confirmed the monophyly of Ardeidae, Threskiorothidae and Ciconiidae. The phylogenetic analysis also revealed that Egretta was more closely related to Ardea than to Nycticorax in the Ardeidae, and Platalea was more closely related to Threskiornis than to Nipponia in the Threskiornithidae. These findings contribute to our understanding of the phylogenetic relationships of Ciconiiformes based on complete mitogenome data.
Collapse
Affiliation(s)
- Yi Zou
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Mei-Dong Jing
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Xiao-Xin Bi
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Ting Zhang
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Ling Huang
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| |
Collapse
|
14
|
Oliveira IDS, Lacorte GA, Weck-Heimann A, Cordeiro LM, Wieloch AH, Mayer G. A new and critically endangered species and genus of Onychophora (Peripatidae) from the Brazilian savannah – a vulnerable biodiversity hotspot. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.985621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. ANNUAL REVIEW OF ENTOMOLOGY 2013; 59:95-117. [PMID: 24160435 DOI: 10.1146/annurev-ento-011613-162007] [Citation(s) in RCA: 879] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.
Collapse
Affiliation(s)
- Stephen L Cameron
- Earth, Environmental & Biological Sciences School, Science & Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| |
Collapse
|
16
|
Brewer MS, Swafford L, Spruill CL, Bond JE. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda) mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships. PLoS One 2013; 8:e68005. [PMID: 23869209 PMCID: PMC3712015 DOI: 10.1371/journal.pone.0068005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/27/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. RESULTS The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. CONCLUSIONS The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships.
Collapse
Affiliation(s)
- Michael S Brewer
- Department of Biology, East Carolina University, Greenville, North Carolina, USA.
| | | | | | | |
Collapse
|
17
|
Oliveira IDS, Schaffer S, Kvartalnov PV, Galoyan EA, Palko IV, Weck-Heimann A, Geissler P, Ruhberg H, Mayer G. A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae. ZOOL ANZ 2013. [DOI: 10.1016/j.jcz.2013.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kim S, Lim BJ, Min GS, Choi HG. The complete mitochondrial genome of Arctic Calanus hyperboreus (Copepoda, Calanoida) reveals characteristic patterns in calanoid mitochondrial genome. Gene 2013; 520:64-72. [DOI: 10.1016/j.gene.2012.09.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 12/13/2022]
|
19
|
Hartikainen H, Waeschenbach A, Wöss E, Wood T, Okamura B. Divergence and species discrimination in freshwater bryozoans (Bryozoa: Phylactolaemata). Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna Hartikainen
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Andrea Waeschenbach
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Emmy Wöss
- Department of Freshwater Ecology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
| | - Timothy Wood
- Department of Biological Sciences; Wright State University; 3640 Colonel Glenn Highway Dayton OH 45435 USA
| | - Beth Okamura
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
20
|
Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol Phylogenet Evol 2013. [DOI: 10.1016/j.ympev.2012.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Oliveira IDS, Franke FA, Hering L, Schaffer S, Rowell DM, Weck-Heimann A, Monge-Nájera J, Morera-Brenes B, Mayer G. Unexplored character diversity in onychophora (velvet worms): A comparative study of three peripatid species. PLoS One 2012; 7:e51220. [PMID: 23284667 PMCID: PMC3524137 DOI: 10.1371/journal.pone.0051220] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023] Open
Abstract
Low character variation among onychophoran species has been an obstacle for taxonomic and phylogenetic studies in the past, however we have identified a number of new and informative characters using morphological, molecular, and chromosomal techniques. Our analyses involved a detailed examination of Epiperipatus biolleyi from Costa Rica, Eoperipatus sp. from Thailand, and a new onychophoran species and genus from Costa Rica, Principapillatus hitoyensisgen. et sp. nov.. Scanning electron microscopy on embryos and specimens of varying age revealed novel morphological characters and character states, including the distribution of different receptor types along the antennae, the arrangement and form of papillae on the head, body and legs, the presence and shape of interpedal structures and fields of modified scales on the ventral body surface, the arrangement of lips around the mouth, the number, position and structure of crural tubercles and anal gland openings, and the presence and shape of embryonic foot projections. Karyotypic analyses revealed differences in the number and size of chromosomes among the species studied. The results of our phylogenetic analyses using mitochondrial COI and 12S rRNA gene sequences are in line with morphological and karyotype data. However, our data show a large number of unexplored, albeit informative, characters in the Peripatidae. We suggest that analysing these characters in additional species would help unravel species diversity and phylogeny in the Onychophora, and that inconsistencies among most diagnostic features used for the peripatid genera in the literature could be addressed by identifying a suite of characters common to all peripatids.
Collapse
Affiliation(s)
- Ivo de Sena Oliveira
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
23
|
Abstract
The mitochondrial genome of metazoan animal typically encodes 22 tRNAs. Nematode mt-tRNAs normally lack the T-stem and instead feature a replacement loop. In the class Enoplea, putative mt-tRNAs that are even further reduced have been predicted to lack both the T- and the D-arm. Here we investigate these tRNA candidates in detail. Three lines of computational evidence support that they are indeed minimal functional mt-tRNAs: (1) the high level of conservation of both sequence and secondary structure, (2) the perfect preservation of the anticodons, and (3) the persistence of these sequence elements throughout several genome rearrangements that place them between different flanking genes.
Collapse
Affiliation(s)
- Frank Jühling
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | | | | | | |
Collapse
|
24
|
Bi XX, Huang L, Jing MD, Zhang L, Feng PY, Wang AY. The complete mitochondrial genome sequence of the black-capped capuchin (Cebus apella). Genet Mol Biol 2012; 35:545-52. [PMID: 22888306 PMCID: PMC3389545 DOI: 10.1590/s1415-47572012005000034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 03/01/2012] [Indexed: 11/21/2022] Open
Abstract
The phylogenetic relationships of primates have been extensively investigated, but key issues remain unresolved. Complete mitochondrial genome (mitogenome) data have many advantages in phylogenetic analyses, but such data are available for only 46 primate species. In this work, we determined the complete mitogenome sequence of the black-capped capuchin (Cebus apella). The genome was 16,538 bp in size and consisted of 13 protein-coding genes, 22 tRNAs, two rRNAs and a control region. The genome organization, nucleotide composition and codon usage did not differ significantly from those of other primates. The control region contained several distinct repeat motifs, including a putative termination-associated sequence (TAS) and several conserved sequence blocks (CSB-F, E, D, C, B and 1). Among the protein-coding genes, the COII gene had lower nonsynonymous and synonymous substitutions rates while the ATP8 and ND4 genes had higher rates. A phylogenetic analysis using Maximum likelihood and Bayesian methods and the complete mitogenome data for platyrrhine species confirmed the basal position of the Callicebinae and the sister relationship between Atelinae and Cebidae, as well as the sister relationship between Aotinae (Aotus) and Cebinae (Cebus/Saimiri) in Cebidae. These conclusions agreed with the most recent molecular phylogenetic investigations on primates. This work provides a framework for the use of complete mitogenome information in phylogenetic analyses of the Platyrrhini and primates in general.
Collapse
Affiliation(s)
- Xiao-Xin Bi
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | | | | | | | | | | |
Collapse
|
25
|
Timmermans MJ, Vogler AP. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol 2012; 63:299-304. [DOI: 10.1016/j.ympev.2011.12.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/15/2022]
|
26
|
Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 2011; 40:2833-45. [PMID: 22139921 PMCID: PMC3326299 DOI: 10.1093/nar/gkr1131] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit 'bizarre' secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading 'pseudogenes', even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders.
Collapse
Affiliation(s)
- Frank Jühling
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Waeschenbach A, Taylor PD, Littlewood DTJ. A molecular phylogeny of bryozoans. Mol Phylogenet Evol 2011; 62:718-35. [PMID: 22126903 DOI: 10.1016/j.ympev.2011.11.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
We present the most comprehensive molecular phylogeny of bryozoans to date. Our concatenated alignment of two nuclear ribosomal and five mitochondrial genes includes 95 taxa and 13,292 nucleotide sites, of which 8297 were included. The number of new sequences generated during this project are for each gene:ssrDNA (32), lsrDNA (22), rrnL (38), rrnS (35), cox1 (37), cox3 (34), and cytb (44). Our multi-gene analysis provides a largely stable topology across the phylum. The major groups were unambiguously resolved as (Phylactolaemata (Cyclostomata (Ctenostomata, Cheilostomata))), with Ctenostomata paraphyletic. Within Phylactolaemata, (Stephanellidae, Lophopodidae) form the earliest divergent clade. Fredericellidae is not resolved as a monophyletic family and forms a clade together with Plumatellidae, Cristatellidae and Pectinatellidae, with the latter two as sister taxa. Hyalinella and Gelatinella nest within the genus Plumatella. Cyclostome taxa fall into three major clades: i. (Favosipora (Plagioecia, Rectangulata)); ii. (Entalophoroecia ((Diplosolen, Cardioecia) (Frondipora, Cancellata))); and iii. (Articulata ((Annectocyma, Heteroporidae) (Tubulipora (Tennysonia, Idmidronea)))), with suborders Tubuliporina and Cerioporina, and family Plagioeciidae each being polyphyletic. Ctenostomata is composed of three paraphyletic clades to the inclusion of Cheilostomata: ((Alcyonidium, Flustrellidra) (Paludicella (Anguinella, Triticella)) (Hislopia (Bowerbankia, Amathia)) Cheilostomata); Flustrellidra nests within the genus Alcyonidium, and Amathia nests within the genus Bowerbankia. Suborders Carnosa and Stolonifera are not monophyletic. Within the cheilostomes, Malacostega is paraphyletic to the inclusion of all other cheilostomes. Conopeum is the most early divergent cheilostome, forming the sister group to ((Malacostega, Scrupariina, Inovicellina) ((Hippothoomorpha, Flustrina) (Lepraliomorpha, Umbonulomorpha))); Flustrina is paraphyletic to the inclusion of the hippothoomorphs; neither Lepraliomorpha nor Umbonulomorpha is monophyletic. Ascophorans are polyphyletic, with hippothoomorphs grouping separately from lepraliomorphs and umbonulomorphs; no cribrimorphs were included in the analysis. Results are discussed in the light of molecular and morphological evidence. Ancestral state reconstruction of larval strategy in Gymnolaemata revealed planktotrophy and lecithotrophy as equally parsimonious solutions for the ancestral condition. More comprehensive taxon sampling is expected to clarify this result. We discuss the extent of non-bryozoan contaminant sequences deposited in GenBank and their impact on the reconstruction of metazoan phylogenies and those of bryozoan interrelationships.
Collapse
Affiliation(s)
- Andrea Waeschenbach
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | |
Collapse
|
28
|
Lacorte GA, Oliveira IS, Fonseca CG. Population structure and demographic inferences concerning the endangered onychophoran species Epiperipatus acacioi (Onychophora: Peripatidae). GENETICS AND MOLECULAR RESEARCH 2011; 10:2775-85. [PMID: 22095603 DOI: 10.4238/2011.november.9.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epiperipatus acacioi (Onychophora: Peripatidae) is an endemic species of the Atlantic rainforest in southeastern Brazil, with a restricted known distribution, found only in two nearby areas (Tripuí and Itacolomi). Mitochondrial gene COI sequences of 93 specimens collected across the known range of E. acacioi were used to assess the extant genetic diversity and patterns of genetic structure, as well as to infer the demographic history of this species. We found considerable variability within the populations, even though there has been recent environmental disturbance in these habitats. The samples from the two areas where this species is found showed significantly different COI sequences and constitute two distinct populations [exact test of sample differentiation (P = 0.0008) and pairwise F(ST) analyses (F(ST) = 0.214, P < 0.00001)]. However, there was little genetic differentiation among samples from different sampling sites within populations, suggesting that the potential for dispersal of E. acacioi greater than would have been expected, based on their cryptic behavior and reduced vagility. Mismatch analyses and neutrality tests revealed evidence of recent population expansion processes for both populations, possibly related to variations in the past distribution of this species.
Collapse
Affiliation(s)
- G A Lacorte
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | |
Collapse
|
29
|
Kim MJ, Kang AR, Jeong HC, Kim KG, Kim I. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phylogenet Evol 2011; 61:436-45. [DOI: 10.1016/j.ympev.2011.07.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 07/09/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
|
30
|
Cameron SL, Yoshizawa K, Mizukoshi A, Whiting MF, Johnson KP. Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genomics 2011; 12:394. [PMID: 21813020 PMCID: PMC3199782 DOI: 10.1186/1471-2164-12-394] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/04/2011] [Indexed: 01/16/2023] Open
Abstract
Background The gene composition, gene order and structure of the mitochondrial genome are remarkably stable across bilaterian animals. Lice (Insecta: Phthiraptera) are a major exception to this genomic stability in that the canonical single chromosome with 37 genes found in almost all other bilaterians has been lost in multiple lineages in favour of multiple, minicircular chromosomes with less than 37 genes on each chromosome. Results Minicircular mt genomes are found in six of the ten louse species examined to date and three types of minicircles were identified: heteroplasmic minicircles which coexist with full sized mt genomes (type 1); multigene chromosomes with short, simple control regions, we infer that the genome consists of several such chromosomes (type 2); and multiple, single to three gene chromosomes with large, complex control regions (type 3). Mapping minicircle types onto a phylogenetic tree of lice fails to show a pattern of their occurrence consistent with an evolutionary series of minicircle types. Analysis of the nuclear-encoded, mitochondrially-targetted genes inferred from the body louse, Pediculus, suggests that the loss of mitochondrial single-stranded binding protein (mtSSB) may be responsible for the presence of minicircles in at least species with the most derived type 3 minicircles (Pediculus, Damalinia). Conclusions Minicircular mt genomes are common in lice and appear to have arisen multiple times within the group. Life history adaptive explanations which attribute minicircular mt genomes in lice to the adoption of blood-feeding in the Anoplura are not supported by this expanded data set as minicircles are found in multiple non-blood feeding louse groups but are not found in the blood-feeding genus Heterodoxus. In contrast, a mechanist explanation based on the loss of mtSSB suggests that minicircles may be selectively favoured due to the incapacity of the mt replisome to synthesize long replicative products without mtSSB and thus the loss of this gene lead to the formation of minicircles in lice.
Collapse
Affiliation(s)
- Stephen L Cameron
- Discipline of Biogeosciences, Faculty of Science & Technology, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | | | | | | | | |
Collapse
|
31
|
Segovia R, Pett W, Trewick S, Lavrov DV. Extensive and evolutionarily persistent mitochondrial tRNA editing in Velvet Worms (phylum Onychophora). Mol Biol Evol 2011; 28:2873-81. [PMID: 21546355 DOI: 10.1093/molbev/msr113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genomes of onychophorans (velvet worms) present an interesting problem: Some previous studies reported them lacking several transfer RNA (tRNA) genes, whereas others found that all their tRNA genes were present but severely reduced. To resolve this discrepancy, we determined complete mitochondrial DNA (mtDNA) sequences of the onychophorans Oroperipatus sp. and Peripatoides sympatrica as well as cDNA sequences from 14 and 10 of their tRNAs, respectively. We show that tRNA genes in these genomes are indeed highly reduced and encode truncated molecules, which are restored to more conventional structures by extensive tRNA editing. During this editing process, up to 34 nucleotides are added to the tRNA sequences encoded in Oroperipatus sp. mtDNA, rebuilding the aminoacyl acceptor stem, the TΨC arm, and in some extreme cases, the variable arm and even a part of the anticodon stem. The editing is less extreme in P. sympatrica in which at least a part of the TΨC arm is always encoded in mtDNA. When the entire TΨC arm is added de novo in Oroperipatus sp., the sequence of this arm is either identical or similar among different tRNA species, yet the sequences show substantial variation for each tRNA. These observations suggest that the arm is rebuilt, at least in part, by a template-independent mechanism and argue against the alternative possibility that tRNA genes or their parts are imported from the nucleus. By contrast, the 3' end of the aminoacyl acceptor stem is likely restored by a template-dependent mechanism. The extreme tRNA editing reported here has been preserved for >140 My as it was found in both extant families of onychophorans. Furthermore, a similar type of tRNA editing may be present in several other groups of arthropods, which show a high degree of tRNA gene reduction in their mtDNA.
Collapse
Affiliation(s)
- Romulo Segovia
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, USA
| | | | | | | |
Collapse
|
32
|
Braband A, Podsiadlowski L, Cameron SL, Daniels S, Mayer G. Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae). Mol Phylogenet Evol 2010; 57:293-300. [DOI: 10.1016/j.ympev.2010.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/09/2010] [Accepted: 05/13/2010] [Indexed: 11/30/2022]
|