1
|
Tomasco IH, Ceballos SG, Austrich A, Brook F, Caraballo DA, Fernández GP, Lanzone C, Mora MS, Parada A, Sánchez RT, Lessa EP. Underground speciation: Unraveling the systematics and evolution of the highly diverse tuco-tucos (genus Ctenomys) with genomic data. Mol Phylogenet Evol 2024; 199:108163. [PMID: 39079596 DOI: 10.1016/j.ympev.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Subterranean rodents of the genus Ctenomys (tuco-tucos) are endemic to South America and have experienced relatively recent radiation. There are about 67 recognized species that originated in approximately 1-2 MY. They stand out for their species richness, extraordinary chromosomal diversity, and wide range of habitat they occupy in the continent. Phylogenetic relationships among species of tuco-tucos have been challenging to resolve. Groups of closely-related species have been suggested, but their relationships must be resolved. This study estimates the phylogeny of the genus using massive sequencing, generating thousands of independent molecular markers obtained by RADseq, with a taxonomic sampling that includes 66% of the recognized species. The sequences obtained were mapped against the C. sociabilis genome, recovering up to 1,215 widely shared RAD loci with more than 19,000 polymorphic sites. Our new phylogenetic hypothesis corroborated the species groups previously proposed with cytochrome b gene sequences and provided a much greater resolution of the relationships among species groups. The frater group is sister to all other tuco-tucos, whereas some of the earlierliest proposals placed the sociabilis group as sister to all other tuco-tucos. Ctenomys leucodon, previously proposed as an independent lineage, is associated with the frater group with moderate statistical support. The magellanicus and mendocinus are sister groups in a major clade formed by the boliviensis, talarum, tucumanus, torquatus, and opimus groups. Ctenomys viperinus, included in the phylogeny for the first time, belongs to the tucumanus group. This multi-locus phylogenetic hypothesis provides insights into the historical biogeography of understanding this highly diverse genus.
Collapse
Affiliation(s)
- Ivanna H Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República. Montevideo, 11300, Uruguay.
| | - Santiago G Ceballos
- Universidad Nacional de Tierra del Fuego (ICPA-UNTDF), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Argentina
| | - Ailin Austrich
- Instituto de Investigaciones Marinas y Costeras (IIMyC) - (UNMDP-CONICET), Argentina
| | - Federico Brook
- Laboratorio de Investigaciones en Evolución y Biodiversidad. Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, sede Esquel, Argentina
| | - Diego A Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Universitaria-Pabellón II, Buenos Aires, Argentina
| | - Gabriela P Fernández
- Centro de Bioinvestigaciones CeBio, UNNOBA-CICBA - Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires CITNOBA UNNOBA-CONICET, Pergamino, Argentina
| | - Cecilia Lanzone
- Laboratorio de Genética Evolutiva, FCEQyN, IBS, UNaM-CONICET, CPA N3300LQF Posadas, Misiones, Argentina
| | - Matías S Mora
- Instituto de Investigaciones Marinas y Costeras (IIMyC) - (UNMDP-CONICET), Argentina
| | - Andrés Parada
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República. Montevideo, 11300, Uruguay
| | - R Tatiana Sánchez
- Instituto de Investigaciones de Biodiversidad Argentina (PIDBA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República. Montevideo, 11300, Uruguay
| |
Collapse
|
2
|
Wei Z, Yang Y, Meng L, Zhang N, Liu S, Meng L, Li Y, Shao C. The Mitogenomic Landscape of Hexacorallia Corals: Insight into Their Slow Evolution. Int J Mol Sci 2024; 25:8218. [PMID: 39125787 PMCID: PMC11311739 DOI: 10.3390/ijms25158218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.
Collapse
Affiliation(s)
- Zhanfei Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Yang Yang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Lihui Meng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Nannan Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Liang Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| |
Collapse
|
3
|
Liu M, Hu SY, Li M, Sun H, Yuan ML. Comparative mitogenomic analysis provides evolutionary insights into Formica (Hymenoptera: Formicidae). PLoS One 2024; 19:e0302371. [PMID: 38857223 PMCID: PMC11164359 DOI: 10.1371/journal.pone.0302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/02/2024] [Indexed: 06/12/2024] Open
Abstract
Formica is a large genus in the family Formicidae with high diversity in its distribution, morphology, and physiology. To better understand evolutionary characteristics of Formica, the complete mitochondrial genomes (mitogenomes) of two Formica species were determined and a comparative mitogenomic analysis for this genus was performed. The two newly sequenced Formica mitogenomes each included 37 typical mitochondrial genes and a large non-coding region (putative control region), as observed in other Formica mitogenomes. Base composition, gene order, codon usage, and tRNA secondary structure were well conserved among Formica species, whereas diversity in sequence size and structural characteristics was observed in control regions. We also observed several conserved motifs in the intergenic spacer regions. These conserved genomic features may be related to mitochondrial function and their highly conserved physiological constraints, while the diversity of the control regions may be associated with adaptive evolution among heterogenous habitats. A negative AT-skew value on the majority chain was presented in each of Formica mitogenomes, indicating a reversal of strand asymmetry in base composition. Strong codon usage bias was observed in Formica mitogenomes, which was predominantly determined by nucleotide composition. All 13 mitochondrial protein-coding genes of Formica species exhibited molecular signatures of purifying selection, as indicated by the ratio of non-synonymous substitutions to synonymous substitutions being less than 1 for each protein-coding gene. Phylogenetic analyses based on mitogenomic data obtained fairly consistent phylogenetic relationships, except for two Formica species that had unstable phylogenetic positions, indicating mitogenomic data are useful for constructing phylogenies of ants. Beyond characterizing two additional Formica mitogenomes, this study also provided some key evolutionary insights into Formica.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Hao Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Mei X, Wang X, Wu X, Liu G, Chen Y, Zhou S, Shang Y, Liu Z, Yang X, Sha W, Zhang H. Mitochondrial Genomic Evidence of Selective Constraints in Small-Bodied Terrestrial Cetartiodactyla. Animals (Basel) 2024; 14:1434. [PMID: 38791652 PMCID: PMC11117313 DOI: 10.3390/ani14101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Body size may drive the molecular evolution of mitochondrial genes in response to changes in energy requirements across species of different sizes. In this study, we perform selection pressure analysis and phylogenetic independent contrasts (PIC) to investigate the association between molecular evolution of mitochondrial genome protein-coding genes (mtDNA PCGs) and body size in terrestrial Cetartiodactyla. Employing selection pressure analysis, we observe that the average non-synonymous/synonymous substitution rate ratio (ω) of mtDNA PCGs is significantly reduced in small-bodied species relative to their medium and large counterparts. PIC analysis further confirms that ω values are positively correlated with body size (R2 = 0.162, p = 0.0016). Our results suggest that mtDNA PCGs of small-bodied species experience much stronger purifying selection as they need to maintain a heightened metabolic rate. On the other hand, larger-bodied species may face less stringent selective pressures on their mtDNA PCGs, potentially due to reduced relative energy expenditure per unit mass. Furthermore, we identify several genes that undergo positive selection, possibly linked to species adaptation to specific environments. Therefore, despite purifying selection being the predominant force in the evolution of mtDNA PCGs, positive selection can also occur during the process of adaptive evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honghai Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China; (X.M.)
| |
Collapse
|
5
|
Recknagel H, Zakšek V, Delić T, Gorički Š, Trontelj P. Multiple transitions between realms shape relict lineages of Proteus cave salamanders. Mol Ecol 2024; 33:e16868. [PMID: 36715250 DOI: 10.1111/mec.16868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
In comparison to biodiversity on Earth's surface, subterranean biodiversity has largely remained concealed. The olm (Proteus anguinus) is one of the most enigmatic extant cave inhabitants, and until now little was known regarding its genetic structure and evolutionary history. Olms inhabit subterranean waters throughout the Dinaric Karst of the western Balkans, with a seemingly uniform phenotypic appearance of cave-specialized traits: an elongate body, snout and limbs, degenerated eyes and loss of pigmentation ("white olm"). Only a single small region in southeastern Slovenia harbours olms with a phenotype typical of surface animals: pigmented skin, eyes, a blunt snout and short limbs ("black olm"). We used a combination of mitochondrial DNA and genome-wide single nucleotide polymorphism data to investigate the molecular diversity, evolutionary history and biogeography of olms along the Dinaric Karst. We found nine deeply divergent species-level lineages that separated between 17 and 4 million years ago, while molecular diversity within lineages was low. We detected no signal of recent admixture between lineages and only limited historical gene flow. Biogeographically, the contemporaneous distribution of lineages mostly mirrors hydrologically separated subterranean environments, while the historical separation of olm lineages follows microtectonic and climatic changes in the area. The reconstructed phylogeny suggests at least four independent transitions to the cave phenotype. Two of the species-level lineages have miniscule ranges and may represent Europe's rarest amphibians. Their rarity and the decline in other lineages call for protection of their subterranean habitats.
Collapse
Affiliation(s)
- H Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - V Zakšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - T Delić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Š Gorički
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Scriptorium biologorum, Murska Sobota, Slovenia
| | - P Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Kong D, Gan Z, Li X. Phylogenetic relationships and adaptation in deep-sea carideans revealed by mitogenomes. Gene 2024; 896:148054. [PMID: 38042216 DOI: 10.1016/j.gene.2023.148054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
The deep-sea environment is characterized by extreme and inhospitable conditions, including oxygen depletion, low temperatures, high pressure, absence of light, and limited food availability. Mitochondria and mitogenomes play a crudial role in aerobic respiration to generate energy for eukaryotes. Here, using the Illumina Hiseq 4000 platform, we performed mitogenome sequencing for five deep-sea caridean species: Lebbeus shinkaiae, Lebbeus Formosus, Glyphocrangon regalis, Heterocarpus dorsalis, and Heterocarpus laevigatus, and five deep-sea caridean mitogenomes were assembled and identified. Each of the five mitogenomes contained 13 protein-coding genes, 2 rRNAs and 22 tRNAs. Specific elements, such as tandem repeats and AT-rich sequences, were observed in the control regions of Lebbeus formosus and Lebbeus shinkaiae, potentially take a role in regulating mitochondrial genome replication and transcription. The gene order of all obtained mitogenomes follows caridean ancestral type organization. Phylogenetic analysis shows a robustly supported phylogenetic tree for the infraorder Caridea. The monophyly of the families included in this study was strongly supported. This study supports the monophyly of Oplophoroidea, but rejects the monophyletic status of Nematocarcinoidea, Crangonoidea, and Alpheoidea. At the genus level, Plesionika is polyphyletic and Rimicaris is paraphyletic in our analysis. Furthermore, Paralebbeus may be considered invalid and synonymous with Lebbeus. Positive selection analysis reveals evidence for adaptive changes in the mitogenome of different deep-sea caridean lineages. Nine residues located in cox1, cox3, atp6, nad1, nad2, nad4, nad5, nad6 and cytb were determined to have undergone positive selection. Mitogenome of different deep-sea lineages experienced different positive selection, and the lineage represented by Alvinocarididae living in deep-sea hydrothermal vents experienced the strongest positive selection. This study provides valuable insights into the adaptive evolution of deep-sea shrimps at the mitochondrial, highlighting the mitogenomic strategy that contribute to their unique adaptations in the deep-sea environment.
Collapse
Affiliation(s)
- Deming Kong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhibin Gan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xinzheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Hui M, Zhang Y, Wang A, Sha Z. The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents. Animals (Basel) 2023; 13:3313. [PMID: 37958068 PMCID: PMC10648102 DOI: 10.3390/ani13213313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The snail P. glabra is an endemic species in deep-sea chemosynthetic ecosystems of the Northwest Pacific Ocean. To obtain more genetic information on this species and provide the basis for subsequent whole-genome map construction, a genome survey was performed on this snail from the hydrothermal vent of Okinawa Trough. The genomic size of P. glabra was estimated to be 1.44 Gb, with a heterozygosity of 1.91% and a repeated sequence content of 69.80%. Based on the sequencing data, a draft genome of 1.32 Gb was assembled. Transposal elements (TEs) accounted for 40.17% of the entire genome, with DNA transposons taking the highest proportion. It was found that most TEs were inserted in the genome recently. In the simple sequence repeats, the dinucleotide motif was the most enriched microsatellite type, accounting for 53% of microsatellites. A complete mitochondrial genome of P. glabra with a total length of 16,268 bp was assembled from the sequencing data. After comparison with the published mitochondrial genome of Provanna sp. from a methane seep, 331 potential single nucleotide polymorphism (SNP) sites were identified in protein-coding genes (PCGs). Except for the cox1 gene, nad2, nad4, nad5, and cob genes are expected to be candidate markers for population genetic and phylogenetic studies of P. glabra and other deep-sea snails. Compared with shallow-water species, three mitochondrial genes of deep-sea gastropods exhibited a higher evolutionary rate, indicating strong selection operating on mitochondria of deep-sea species. This study provides insights into the genome characteristics of P. glabra and supplies genomic resources for further studies on the adaptive evolution of the snail in extreme deep-sea chemosynthetic environments.
Collapse
Affiliation(s)
- Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.H.); (A.W.)
- Laoshan Laboratory, Qingdao 266237, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China;
| | - Aiyang Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.H.); (A.W.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.H.); (A.W.)
- Laoshan Laboratory, Qingdao 266237, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
8
|
Li F, Zhang Y, Zhong T, Heng X, Ao T, Gu Z, Wang A, Liu C, Yang Y. The Complete Mitochondrial Genomes of Two Rock Scallops (Bivalvia: Spondylidae) Indicate Extensive Gene Rearrangements and Adaptive Evolution Compared with Pectinidae. Int J Mol Sci 2023; 24:13844. [PMID: 37762147 PMCID: PMC10531248 DOI: 10.3390/ijms241813844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Different from the diverse family Pectinidae, the Spondylidae is a small group with a single genus that shares the sedentary life habit of cementing themselves to the substrate. However, little information related to the genetic diversity of Spondylidae has been reported. In the present study, the complete mitochondrial genomes of Spondylus versicolor and S. spinosus were sequenced and compared with those of pectinids. The mtDNA of S. versicolor and S. spinosus show similar patterns with respect to genome size, AT content, AT skew, GC skew, and codon usage, and their mitogenomic sizes are longer than most pectinid species. The mtDNA of S. spinosus is 27,566 bp in length, encoding 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes, while an additional tRNA-Met was found in the mtDNA of S. versicolor, which is 28,600 bp in length. The monophylies of Spondylidae and Pectinidae were well supported, but the internal relationships within Pectinidae remain unresolved due to the paraphyly of the genus Mimachlamy and the controversial position of the tribe Aequipectinini. The gene orders of S. versicolor and S. spinosus are almost identical but differ greatly from species of the Pectinidae, indicating extensive gene rearrangements compared with Pectinidae. Positive selection analysis revealed evidence of adaptive evolution in the branch of Spondylidae. The present study could provide important information with which to understand the evolutionary progress of the diverse and economically significant marine bivalve Pectinoidea.
Collapse
Affiliation(s)
- Fengping Li
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Yu Zhang
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Tao Zhong
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
| | - Xin Heng
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tiancheng Ao
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
| | - Zhifeng Gu
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Aimin Wang
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Chunsheng Liu
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Yi Yang
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Bondareva O, Petrova T, Bodrov S, Gavrilo M, Smorkatcheva A, Abramson N. How voles adapt to subterranean lifestyle: Insights from RNA-seq. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Life under the earth surface is highly challenging and associated with a number of morphological, physiological and behavioral modifications. Subterranean niche protects animals from predators, fluctuations in environmental parameters, but is characterized by high levels of carbon dioxide and low levels of oxygen and implies high energy requirements associated with burrowing. Moreover, it lacks most of the sensory inputs available above ground. The current study describes results from RNA-seq analysis of four subterranean voles from subfamily Arvicolinae: Prometheomys schaposchnikowi, Ellobius lutescens, Terricola subterraneus, and Lasiopodomys mandarinus. Original RNA-seq data were obtained for eight species, for nine species, SRA data were downloaded from the NCBI SRA database. Additionally assembled transcriptomes of Mynomes ochrogaster and Cricetulus griseus were included in the analysis. We searched for the selection signatures and parallel amino acid substitutions in a total of 19 species. Even within this limited data set, we found significant changes of dN/dS ratio by free-ratio model analysis for subterranean Arvicolinae. Parallel substitutions were detected in genes RAD23B and PYCR2. These genes are associated with DNA repair processes and response to oxidative stress. Similar substitutions were discovered in the RAD23 genes for highly specialized subterranean Heterocephalus glaber and Fukomys damarensis. The most pronounced signatures of adaptive evolution related to subterranean niche within species of Arvicolinae subfamily were detected for Ellobius lutescens. Our results suggest that genomic adaptations can occur very quickly so far as the amount of selection signatures was found to be compliant with the degree of specialization to the subterranean niche and independent from the evolutionary age of the taxon. We found that the number of genomic signatures of selection does not depend on the age of the taxon, but is positively correlated with the degree of specialization to the subterranean niche.
Collapse
|
10
|
Nachtigall PG, Loboda TS, Pinhal D. Signatures of positive selection in the mitochondrial genome of neotropical freshwater stingrays provide clues about the transition from saltwater to freshwater environment. Mol Genet Genomics 2023; 298:229-241. [PMID: 36378333 DOI: 10.1007/s00438-022-01977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Neotropical freshwater stingrays (subfamily Potamotrygoninae) are carnivorous bottom feeder batoids widely distributed in most river basins of South America. They represent the unique extant group of elasmobranchs that evolved to live exclusively in freshwater environments. These species are exploited either by commercial fisheries (e.g., for food or ornamental industry) or by indigenous communities allocated along with their natural range. Restrictive life history characteristics coupled with habitat degradation make Potamotrygoninae species highly vulnerable to human impacts and highlight the necessity of studies to inform basic biological aspects, from ecology to genetics, to guide their conservation and clarify the molecular basis of adaptation to the freshwater environment. We used available and newly assembled Potamotrygon spp. mitogenomes to perform a comparative investigation of their molecular evolution. A phylogenetic estimation using the mitogenome of Potamotrygon falkneri and other Elasmobranchii supports monophyly for Potamotrygonidae and indicates a close relationship to Dasyatidae. A synteny analysis comprising 3 Potamotrygon and other 51 batoids revealed a highly conserved mitogenomic context. We detected various amino acid sites under positive selection exclusively in Potamotrygon spp., within the sequences of ND4, ND5, ND6, and COXII genes. Positively selected mutational events in key genes of energetic metabolism may be related to the physiological adaptation of Potamotrygon spp. during the ancient incursion into freshwater. This broad comparative mitogenomic study provides novel insights into the evolutionary history of neotropical freshwater stingrays and their relatives and stands out as a valuable resource to aid in current and future research on elasmobranch molecular evolution.
Collapse
Affiliation(s)
- P G Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - T S Loboda
- Laboratório de Pesquisas Paleontológicas (LPP), CCBN, Universidade Federal do Acre (UFAC), Rio Branco, AC, Brazil.,Departamento Acadêmico de Ensino (DAENS), Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa, PR, Brazil
| | - D Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
11
|
Divergent evolution of mitogenomics in Cetartiodactyla niche adaptation. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Pang X, Han C, Guo B, Liu K, Lin X, Lu X. The First Complete Mitochondrial Genome of Eucrate crenata (Decapoda: Brachyura: Goneplacidae) and Phylogenetic Relationships within Infraorder Brachyura. Genes (Basel) 2022; 13:genes13071127. [PMID: 35885910 PMCID: PMC9323885 DOI: 10.3390/genes13071127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Characterizing the complete mitochondrial genome (mitogenome) of an organism is useful for genomic studies in taxonomy and evolution. The mitogenomic characteristics of Eucrate crenata (Decapoda: Brachyura: Goneplacidae) have never been studied. The present study decodes the first mitogenome of E. crenata by high-throughput sequencing (HTS). The length of the mitogenome is 15,597 bp, and it contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL), and 22 transfer RNA genes. There are 14 and 23 genes observed on the heavy and light strands, respectively. E. crenata possesses a trnH-cac translocation, with the trnH-cac shifted between trnE-gaa and trnF-ttc instead of the usual location between nad5 and nad4 in decapods. Phylogenetic analyses based on the current dataset of 33 Brachyuran mitogenomes indicate that E. crenata. is closely related to Ashtoret lunaris of Matutidae. The similar codon usage and rearrangements in the two species provide evidence for their close phylogenetic relationship. Positive selection analysis showed that one residue located in cox1 was identified as a positively selected site with high BEB value (>95%), indicating that this gene was under positive selection pressure. This study is the first complete mitogenome record for the family Goneplacidae, and the results obtained may improve the understanding of the phylogeny of Goneplacidae in Brachyura.
Collapse
Affiliation(s)
- Xiaoke Pang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (X.P.); (C.H.)
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (X.P.); (C.H.)
| | - Biao Guo
- Tianjin Fisheries Research Institute, Tianjin 300457, China; (B.G.); (K.L.)
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin 300457, China; (B.G.); (K.L.)
| | - Xiaolong Lin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (X.L.); (X.L.)
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (X.P.); (C.H.)
- Correspondence: (X.L.); (X.L.)
| |
Collapse
|
13
|
Andersen LW, Jacobsen MW, Frydenberg J, Møller JD, Jensen TS. Phylogeography using mitogenomes: A rare Dipodidae,
Sicista betulina
, in North‐western Europe. Ecol Evol 2022; 12:e8865. [PMID: 35475180 PMCID: PMC9022092 DOI: 10.1002/ece3.8865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Repeated climatic and vegetation changes during the Pleistocene have shaped biodiversity in Northern Europe including Denmark. The Northern Birch Mouse (Sicista betulina) was one of the first small rodent species to colonize Denmark after the Late Glacial Maximum. This study analyses complete mitochondrial genomes and two nuclear genes of the Northern Birch Mouse to investigate the phylogeographical pattern in North‐western Europe and test whether the species colonized Denmark through several colonization events. The latter was prompt by (i) the present‐day distinct northern and southern Danish distribution and (ii) the subfossil record of Northern Birch Mouse, supporting early Weichselian colonization. Samples from Denmark, Norway, Sweden, Russia, Latvia, Estonia, and Slovakia were included. Mitogenomes were obtained from 54 individuals, all representing unique mitogenomes supporting high genetic variation. Bayesian phylogenetic analysis identified two distinct evolutionary linages in Northern Europe diverging within the Elster glaciation period. The results of the two nuclear genomes showed lower genetic differentiation but supported the same evolutionary history. This suggests an allopatric origin of the clades followed by secondary contact. Individuals from southern Denmark were only found in one clade, while individuals from other areas, including northern Denmark, were represented in both clades. Nevertheless, we found no evidence for repeated colonization's explaining the observed fragmented distribution of the species today. The results indicated that the mitogenome pattern of the Northern Birch Mouse population in southern Denmark was either (i) due to the population being founded from northern Denmark, (ii) a result of climatic and anthropogenic effects reducing population size increasing genetic drift or (iii) caused by sampling bias.
Collapse
Affiliation(s)
| | - Magnus W. Jacobsen
- Department of Ecoscience Aarhus University Aarhus C Denmark
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | |
Collapse
|
14
|
Mitogenomics provides new insights into the phylogenetic relationships and evolutionary history of deep-sea sea stars (Asteroidea). Sci Rep 2022; 12:4656. [PMID: 35304532 PMCID: PMC8933410 DOI: 10.1038/s41598-022-08644-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The deep sea (> 200 m) is considered as the largest and most remote biome, which characterized by low temperatures, low oxygen level, scarce food, constant darkness, and high hydrostatic pressure. The sea stars (class Asteroidea) are ecologically important and diverse echinoderms in all of the world’s oceans, occurring from the intertidal to the abyssal zone (to about 6000 m). To date, the phylogeny of the sea stars and the relationships of deep-sea and shallow water groups have not yet been fully resolved. Here, we recovered five mitochondrial genomes of deep-sea asteroids. The A+T content of the mtDNA in deep-sea asteroids were significantly higher than that of the shallow-water groups. The gene orders of the five new mitogenomes were identical to that of other asteroids. The phylogenetic analysis showed that the orders Valvatida, Paxillosida, Forcipulatida are paraphyletic. Velatida was the sister order of all the others and then the cladeValvatida-Spinulosida-Paxillosida-Notomyotida versus Forcipulatida-Brisingida. Deep-sea asteroids were nested in different lineages, instead of a well-supported clade. The tropical Western Pacific was suggested as the original area of asteroids, and the temperate water was initially colonized with asteroids by the migration events from the tropical and cold water. The time-calibrated phylogeny showed that Asteroidea originated during Devonian-Carboniferous boundary and the major lineages of Asteroidea originated during Permian–Triassic boundary. The divergence between the deep-sea and shallow-water asteroids coincided approximately with the Triassic-Jurassic extinction. Total 29 positively selected sites were detected in fifteen mitochondrial genes of five deep-sea lineages, implying a link between deep-sea adaption and mitochondrial molecular biology in asteroids.
Collapse
|
15
|
Mar-Silva AF, Arroyave J, Díaz-Jaimes P. The complete mitochondrial genome of the Mexican-endemic cavefish Ophisternon infernale (Synbranchiformes, Synbranchidae): insights on patterns of selection and implications for synbranchiform phylogenetics. Zookeys 2022; 1089:1-23. [PMID: 35586600 PMCID: PMC8933388 DOI: 10.3897/zookeys.1089.78182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022] Open
Abstract
Ophisternoninfernale is one of the 200+ troglobitic fish species worldwide, and one of the two cave-dwelling fishes endemic to the karstic aquifer of the Yucatán Peninsula, Mexico. Because of its elusive nature and the relative inaccessibility of its habitat, there is virtually no genetic information on this enigmatic fish. Herein we report the complete mitochondrial genome of O.infernale, which overall exhibits a configuration comparable to that of other synbranchiforms as well as of more distantly related teleosts. The KA/KS ratio indicates that most mtDNA PCGs in synbranchiforms have evolved under strong purifying selection, preventing major structural and functional protein changes. The few instances of PCGs under positive selection might be related to adaptation to decreased oxygen availability. Phylogenetic analysis of mtDNA comparative data from synbranchiforms and closely related taxa (including the indostomid Indostomusparadoxus) corroborate the notion that indostomids are more closely related to synbranchiforms than to gasterosteoids, but without rendering the former paraphyletic. Our phylogenetic results also suggest that New World species of Ophisternon might be more closely related to Synbranchus than to the remaining Ophisternon species. This novel phylogenetic hypothesis, however, should be further tested in the context of a comprehensive systematic study of the group.
Collapse
|
16
|
Bondareva O, Genelt-Yanovskiy E, Petrova T, Bodrov S, Smorkatcheva A, Abramson N. Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia). Genes (Basel) 2021; 12:1945. [PMID: 34946894 PMCID: PMC8701191 DOI: 10.3390/genes12121945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
This study evaluates signatures of selection in the evolution of the mitochondrial DNA of voles, subfamily Arvicolinae, during the colonization of subterranean environments. The comparative sequence analysis of mitochondrial protein-coding genes of eight subterranean vole species (Prometheomys schaposchnikowi, three species of the genus Ellobius: Ellobius talpinus, Ellobius fuscocapillus and Ellobius lutescens, two species of the genus Terricola: Terricola subterraneus and Terricola daghestanicus, Lasiopodomys mandarinus, and Hyperacrius fertilis) and their closest aboveground relatives was applied using codon-substitution models. The highest number of selection signatures was detected in genes ATP8 and CYTB. The relaxation of selection was observed in most mitochondrial DNA protein-coding genes for subterranean species. The largest amount of relaxed genes is discovered in mole voles (genus Ellobius). The number of selection signatures was found to be independent of the evolutionary age of the lineage but fits the degree of specialization to the subterranean niche. The common trends of selective pressures were observed among the evolutionary ancient and highly specialized subterranean rodent families and phylogenetically young lineages of voles. It suggests that the signatures of adaptation in individual mitochondrial protein-coding genes associated with the colonization of the subterranean niche may appear within a rather short evolutionary timespan.
Collapse
Affiliation(s)
- Olga Bondareva
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Evgeny Genelt-Yanovskiy
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Tatyana Petrova
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Semen Bodrov
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| | - Antonina Smorkatcheva
- Department of Vertebrate Zoology, Biology Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Natalia Abramson
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute RAS, 199034 Saint-Petersburg, Russia; (E.G.-Y.); (T.P.); (S.B.)
| |
Collapse
|
17
|
Abramson NI, Bodrov SY, Bondareva OV, Genelt-Yanovskiy EA, Petrova TV. A mitochondrial genome phylogeny of voles and lemmings (Rodentia: Arvicolinae): Evolutionary and taxonomic implications. PLoS One 2021; 16:e0248198. [PMID: 34797834 PMCID: PMC8604340 DOI: 10.1371/journal.pone.0248198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Arvicolinae is one of the most impressive placental radiations with over 150 extant and numerous extinct species that emerged since the Miocene in the Northern Hemisphere. The phylogeny of Arvicolinae has been studied intensively for several decades using morphological and genetic methods. Here, we sequenced 30 new mitochondrial genomes to better understand the evolutionary relationships among the major tribes and genera within the subfamily. The phylogenetic and molecular dating analyses based on 11,391 bp concatenated alignment of protein-coding mitochondrial genes confirmed the monophyly of the subfamily. While Bayesian analysis provided a high resolution across the entire tree, Maximum Likelihood tree reconstruction showed weak support for the ordering of divergence and interrelationships of tribal level taxa within the most ancient radiation. Both the interrelationships among tribes Lagurini, Ellobiusini and Arvicolini, comprising the largest radiation and the position of the genus Dinaromys within it also remained unresolved. For the first time complex relationships between genus level taxa within the species-rich tribe Arvicolini received full resolution. Particularly Lemmiscus was robustly placed as sister to the snow voles Chionomys in the tribe Arvicolini in contrast with a long-held belief of its affinity with Lagurini. Molecular dating of the origin of Arvicolinae and early divergences obtained from the mitogenome data were consistent with fossil records. The mtDNA estimates for putative ancestors of the most genera within Arvicolini appeared to be much older than it was previously proposed in paleontological studies.
Collapse
Affiliation(s)
- Natalia I. Abramson
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Semyon Yu. Bodrov
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Olga V. Bondareva
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Evgeny A. Genelt-Yanovskiy
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Tatyana V. Petrova
- Department of Molecular Systematics, Laboratory of Theriology, Zoological Institute RAS, Saint Petersburg, Russia
| |
Collapse
|
18
|
Chand GB, Kumar S, Azad GK. Molecular assessment of proteins encoded by the mitochondrial genome of Clarias batrachus and Clarias gariepinus. Biochem Biophys Rep 2021; 26:100985. [PMID: 33855227 PMCID: PMC8024883 DOI: 10.1016/j.bbrep.2021.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
The population of catfish, Clarias batrachus has substantially diminished in various countries and studies show that another related species Clarias gariepinus is replacing it. The better adaptability and survivability of C. gariepinus over C. batrachus could be attributed to the metabolic differences between these two species, which is primarily regulated by mitochondrial activities. To understand the reasons behind this phenomenon, we performed in silico analyses to decipher the differences between the proteins encoded by the mitochondrial genome of these two related species. Our analysis revealed that out of thirteen, twelve proteins encoded by the mitochondrial genome of these two species have substantial variations between them. We characterised these variations by analysing their effect on secondary structure, intrinsic disorder predisposition, and functional impact on protein and stability parameters. Our data show that most of the parameters are changing between these two closely related species. Altogether, we demonstrate the molecular insights into the mitochondrial genome-encoded proteins of these two species and predict their effect on protein function and stability that might be helping C. gariepinus to gain survivability better than the C. batrachus.
Collapse
Affiliation(s)
| | - Sushant Kumar
- Department of Zoology, Patna University, Patna, Bihar, 800005, India
| | | |
Collapse
|
19
|
Yang M, Dong D, Li X. The complete mitogenome of Phymorhynchus sp. (Neogastropoda, Conoidea, Raphitomidae) provides insights into the deep-sea adaptive evolution of Conoidea. Ecol Evol 2021; 11:7518-7531. [PMID: 34188831 PMCID: PMC8216942 DOI: 10.1002/ece3.7582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
The deep-sea environment is characterized by darkness, hypoxia, and high hydrostatic pressure. Mitochondria play a vital role in energy metabolism; thus, they may endure the selection process during the adaptive evolution of deep-sea organisms. In the present study, the mitogenome of Phymorhynchus sp. from the Haima methane seep was completely assembled and characterized. This mitogenome is 16,681 bp in length and contains 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of most sequenced conoidean gastropods. Some special elements, such as tandem repeat sequences and AT-rich sequences, which are involved in the regulation of the replication and transcription of the mitogenome, were observed in the control region. Phylogenetic analysis revealed that Conoidea is divided into two separate clades with high nodal support. Positive selection analysis revealed evidence of adaptive changes in the mitogenomes of deep-sea conoidean gastropods. Eight residues located in atp6, cox1, cytb, nad1, nad4, and nad5 were determined to have undergone positive selection. This study explores the adaptive evolution of deep-sea conoidean gastropods and provides valuable clues at the mitochondrial level regarding the exceptional adaptive ability of organisms in deep-sea environments.
Collapse
Affiliation(s)
- Mei Yang
- Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Dong Dong
- Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xinzheng Li
- Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
20
|
Awadi A, Ben Slimen H, Schaschl H, Knauer F, Suchentrunk F. Positive selection on two mitochondrial coding genes and adaptation signals in hares (genus Lepus) from China. BMC Ecol Evol 2021; 21:100. [PMID: 34039261 PMCID: PMC8157742 DOI: 10.1186/s12862-021-01832-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Animal mitochondria play a central role in energy production in the cells through the oxidative phosphorylation (OXPHOS) pathway. Recent studies of selection on different mitochondrial OXPHOS genes have revealed the adaptive implications of amino acid changes in these subunits. In hares, climatic variation and/or introgression were suggested to be at the origin of such adaptation. Here we looked for evidence of positive selection in three mitochondrial OXPHOS genes, using tests of selection, protein structure modelling and effects of amino acid substitutions on the protein function and stability. We also used statistical models to test for climate and introgression effects on sites under positive selection. RESULTS Our results revealed seven sites under positive selection in ND4 and three sites in Cytb. However, no sites under positive selection were observed in the COX1 gene. All three subunits presented a high number of codons under negative selection. Sites under positive selection were mapped on the tridimensional structure of the predicted models for the respective mitochondrial subunit. Of the ten amino acid replacements inferred to have evolved under positive selection for both subunits, six were located in the transmembrane domain. On the other hand, three codons were identified as sites lining proton translocation channels. Furthermore, four codons were identified as destabilizing with a significant variation of Δ vibrational entropy energy between wild and mutant type. Moreover, our PROVEAN analysis suggested that among all positively selected sites two fixed amino acid replacements altered the protein functioning. Our statistical models indicated significant effects of climate on the presence of ND4 and Cytb protein variants, but no effect by trans-specific mitochondrial DNA introgression, which is not uncommon in a number of hare species. CONCLUSIONS Positive selection was observed in several codons in two OXPHOS genes. We found that substitutions in the positively selected codons have structural and functional impacts on the encoded proteins. Our results are concordantly suggesting that adaptations have strongly affected the evolution of mtDNA of hare species with potential effects on the protein function. Environmental/climatic changes appear to be a major trigger of this adaptation, whereas trans-specific introgressive hybridization seems to play no major role for the occurrence of protein variants.
Collapse
Affiliation(s)
- Asma Awadi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Hichem Ben Slimen
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
21
|
Burskaia V, Artyushin I, Potapova NA, Konovalov K, Bazykin GA. Convergent Adaptation in Mitochondria of Phylogenetically Distant Birds: Does it Exist? Genome Biol Evol 2021; 13:6284172. [PMID: 34037779 PMCID: PMC8271140 DOI: 10.1093/gbe/evab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
In a wide range of taxa, proteins encoded by mitochondrial genomes are involved in adaptation to lifestyle that requires oxygen starvation or elevation of metabolism rate. It remains poorly understood to what extent adaptation to similar conditions is associated with parallel changes in these proteins. We search for a genetic signal of parallel or convergent evolution in recurrent molecular adaptation to high altitude, migration, diving, wintering, unusual flight abilities, or loss of flight in mitochondrial genomes of birds. Developing on previous work, we design an approach for the detection of recurrent coincident changes in genotype and phenotype, indicative of an association between the two. We describe a number of candidate sites involved in recurrent adaptation in ND genes. However, we find that the majority of convergence events can be explained by random coincidences without invoking adaptation.
Collapse
Affiliation(s)
- Valentina Burskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia.,Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Ilja Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda A Potapova
- Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| | - Kirill Konovalov
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Georgii A Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Moscow Oblast, Russia.,Molecular Evolution Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, Russia
| |
Collapse
|
22
|
Bondareva OV, Potapova NA, Konovalov KA, Petrova TV, Abramson NI. Searching for signatures of positive selection in cytochrome b gene associated with subterranean lifestyle in fast-evolving arvicolines (Arvicolinae, Cricetidae, Rodentia). BMC Ecol Evol 2021; 21:92. [PMID: 34016058 PMCID: PMC8136191 DOI: 10.1186/s12862-021-01819-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the subfamily Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterranean lifestyle in several phylogenetically independent lineages. Results We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence variation, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subterranean species. Conclusions Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-encoded proteins involved in oxidative phosphorylation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01819-4.
Collapse
Affiliation(s)
| | - Nadezhda A Potapova
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | | | | | | |
Collapse
|
23
|
Chak STC, Baeza JA, Barden P. Eusociality Shapes Convergent Patterns of Molecular Evolution across Mitochondrial Genomes of Snapping Shrimps. Mol Biol Evol 2021; 38:1372-1383. [PMID: 33211078 PMCID: PMC8480187 DOI: 10.1093/molbev/msaa297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm-lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits-extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY
| | - Juan Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
24
|
Kakehashi R, Kurabayashi A. Patterns of Natural Selection on Mitochondrial Protein-Coding Genes in Lungless Salamanders: Relaxed Purifying Selection and Presence of Positively Selected Codon Sites in the Family Plethodontidae. Int J Genomics 2021; 2021:6671300. [PMID: 33928143 PMCID: PMC8053045 DOI: 10.1155/2021/6671300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
There are two distinct lungless groups in caudate amphibians (salamanders and newts) (the family Plethodontidae and the genus Onychodactylus, from the family Hynobiidae). Lunglessness is considered to have evolved in response to environmental and/or ecological adaptation with respect to oxygen requirements. We performed selection analyses on lungless salamanders to elucidate the selective patterns of mitochondrial protein-coding genes associated with lunglessness. The branch model and RELAX analyses revealed the occurrence of relaxed selection (an increase of the dN/dS ratio = ω value) in most mitochondrial protein-coding genes of plethodontid salamander branches but not in those of Onychodactylus. Additional branch model and RELAX analyses indicated that direct-developing plethodontids showed the relaxed pattern for most mitochondrial genes, although metamorphosing plethodontids had fewer relaxed genes. Furthermore, aBSREL analysis detected positively selected codons in three plethodontid branches but not in Onychodactylus. One of these three branches corresponded to the most recent common ancestor, and the others corresponded with the most recent common ancestors of direct-developing branches within Hemidactyliinae. The positive selection of mitochondrial protein-coding genes in Plethodontidae is probably associated with the evolution of direct development.
Collapse
Affiliation(s)
- Ryosuke Kakehashi
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Atsushi Kurabayashi
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
25
|
The evolutionary history of manatees told by their mitogenomes. Sci Rep 2021; 11:3564. [PMID: 33574363 PMCID: PMC7878490 DOI: 10.1038/s41598-021-82390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The manatee family encompasses three extant congeneric species: Trichechus senegalensis (African manatee), T. inunguis (Amazonian manatee), and T. manatus (West Indian manatee). The fossil record for manatees is scant, and few phylogenetic studies have focused on their evolutionary history. We use full mitogenomes of all extant manatee species to infer the divergence dates and biogeographical histories of these species and the effect of natural selection on their mitogenomes. The complete mitochondrial genomes of T. inunguis (16,851 bp), T. senegalensis (16,882 bp), and T. manatus (16,882 bp), comprise 13 protein-coding genes, 2 ribosomal RNA genes (rRNA - 12S and 16S), and 22 transfer RNA genes (tRNA), and (D-loop/CR). Our analyses show that the first split within Trichechus occurred during the Late Miocene (posterior mean 6.56 Ma and 95% HPD 3.81–10.66 Ma), followed by a diversification event in the Plio-Pleistocene (posterior mean 1.34 Ma, 95% HPD 0.1–4.23) in the clade composed by T. inunguis and T. manatus; T. senegalensis is the sister group of this clade with higher support values (pp > 0.90). The branch-site test identified positive selection on T. inunguis in the 181st position of the ND4 amino acid gene (LRT = 6.06, p = 0.0069, BEB posterior probability = 0.96). The ND4 gene encodes one subunit of the NADH dehydrogenase complex, part of the oxidative phosphorylation machinery. In conclusion, our results provide novel insight into the evolutionary history of the Trichechidae during the Late Miocene, which was influenced by geological events, such as Amazon Basin formation.
Collapse
|
26
|
Bartáková V, Bryjová A, Nicolas V, Lavrenchenko LA, Bryja J. Mitogenomics of the endemic Ethiopian rats: looking for footprints of adaptive evolution in sky islands. Mitochondrion 2021; 57:182-191. [PMID: 33412336 DOI: 10.1016/j.mito.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/09/2022]
Abstract
Organisms living in high altitude must adapt to environmental conditions with hypoxia and low temperature, e.g. by changes in the structure and function of proteins associated with oxidative phosphorylation in mitochondria. Here we analysed the signs of adaptive evolution in 27 mitogenomes of endemic Ethiopian rats (Stenocephalemys), where individual species adapted to different elevation. Significant signals of positive selection were detected in 10 of the 13 mitochondrial protein-coding genes, with a majority of functional substitutions in the NADH dehydrogenase complex. Higher frequency of positively selected sites was found in phylogenetic lineages corresponding to Afroalpine specialists.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51 Paris, France
| | - Leonid A Lavrenchenko
- A. N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
Pejo M, Tomasco IH. Adaptive evolution of β-globin gene in subterranean in South America octodontid rodents. Gene 2020; 772:145352. [PMID: 33359035 DOI: 10.1016/j.gene.2020.145352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
The convergent evolution of subterranean rodents is an excellent model to study how natural selection operates and the genetic bases of these adaptations, but the study on the different taxa has been very uneven and still insufficient. In the octodontoid caviomorph rodent superfamily there are two independent lineages where they have recently evolved into totally underground lifestyles: the genera Ctenomys (tuco-tucos) and Spalacopus (coruro). The underground habitat is characterized by an hypoxic and hypercapnic atmosphere, thus gas exchange is one of the most important challenges for these animals. The invasion of the underground niche could have modified the selective regimes of proteins involved in the respiration and transport of O2 of these rodents, positively selecting mutations of higher affinity for O2. Here we examine the sequence variation in the beta globin gene in these two lineages, within a robust phylogenetic context. Using different approaches (classical and Bayesian maximum likelihood (PAML/Datamonkey) and alternatives methods (TreeSAAP)) we found at least three sites with evidence of positive selection in underground lineages, especially the basal branch that leads to the Octodontidae family and the branch that leads to the coruro, suggesting some adaptive changes to the underground life. We also found a convergence with another underground rodent, which cannot be identified by the above methods.
Collapse
Affiliation(s)
- Mariana Pejo
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ivanna H Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
28
|
Phylomitogenomics provides new perspectives on the Euphasmatodea radiation (Insecta: Phasmatodea). Mol Phylogenet Evol 2020; 155:106983. [PMID: 33059069 DOI: 10.1016/j.ympev.2020.106983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
Phasmatodea species diversity lies almost entirely within its suborder Euphasmatodea, which exhibits a pantropical distribution and is considered to derive from a recent and rapid evolutionary radiation. To shed light on Euphasmatodea origins and diversification, we assembled the mitogenomes of 17 species from transcriptomic sequencing data and analysed them along with 22 already available Phasmatodea mitogenomes and 33 mitogenomes representing most of the Polyneoptera lineages. Maximum Likelihood and Bayesian Inference approaches retrieved consistent topologies, both showing the widespread conflict between phylogenetic approaches and traditional systematics. We performed a divergence time analysis leveraging ten fossil specimens representative of most polyneopteran lineages: the time tree obtained supports an older radiation of the clade with respect to previous hypotheses. Euphasmatodea diversification is inferred to have started ~ 187 million years ago, suggesting that the Triassic-Jurassic mass extinction and the breakup of Pangea could have contributed to the process. We also investigated Euphasmatodea mitogenomes patterns of dN, dS and dN/dS ratio throughout our time-tree, trying to characterize the selective regime which may have shaped the clade evolution.
Collapse
|
29
|
Sun X, Yu D, Xie Z, Dong J, Ding Y, Yao H, Greenslade P. Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. PLoS One 2020; 15:e0230827. [PMID: 32282807 PMCID: PMC7153868 DOI: 10.1371/journal.pone.0230827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Collembola are a basal group of Hexapoda renowned for both unique morphological characters and significant ecological roles. However, a robust and plausible phylogenetic relationship between its deeply divergent lineages has yet to be achieved. We carried out a mitophylogenomic study based on a so far the most comprehensive mitochondrial genome dataset. Our data matrix contained mitogenomes of 31 species from almost all major families of all four orders, with 16 mitogenomes newly sequenced and annotated. We compared the linear arrangements of genes along mitochondria across species. Then we conducted 13 analyses each under a different combination of character coding, partitioning scheme and heterotachy models, and assessed their performance in phylogenetic inference. Several hypothetical tree topologies were also tested. Mitogenomic structure comparison revealed that most species share the same gene order of putative ancestral pancrustacean pattern, while seven species from Onychiuridae, Poduridae and Symphypleona bear different levels of gene rearrangements, indicating phylogenetic signals. Tomoceroidea was robustly recovered for the first time in the presence of all its families and subfamilies. Monophyly of Onychiuroidea was supported using unpartitioned models alleviating LBA. Paronellidae was revealed polyphyletic with two subfamilies inserted independently into Entomobryidae. Although Entomobryomorpha has not been well supported, more than half of the analyses obtained convincing topologies by placing Tomoceroidea within or near remaining Entomobryomorpha. The relationship between elongate-shaped and spherical-shaped collembolans still remained ambiguous, but Neelipleona tend to occupy the basal position in most trees. This study showed that mitochondrial genomes could provide important information for reconstructing the relationships among Collembola when suitable analytical approaches are implemented. Of all the data refining and model selecting schemes used in this study, the combination of nucleotide sequences, partitioning model and exclusion of third codon positions performed better in generating more reliable tree topology and higher node supports than others.
Collapse
Affiliation(s)
- Xin Sun
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: ,
| | - Zhijing Xie
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Dong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Yao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Penelope Greenslade
- Environmental Management, School of Applied and Biomedical Science, Federation University, Ballarat, Victoria, Australia
- Division of Biology, Australian National University, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Yang M, Gong L, Sui J, Li X. The complete mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive evolution of vesicomyids. PLoS One 2019; 14:e0217952. [PMID: 31536521 PMCID: PMC6752807 DOI: 10.1371/journal.pone.0217952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
The deep-sea chemosynthetic environment is one of the most extreme environments on the Earth, with low oxygen, high hydrostatic pressure and high levels of toxic substances. Species of the family Vesicomyidae are among the dominant chemosymbiotic bivalves found in this harsh habitat. Mitochondria play a vital role in oxygen usage and energy metabolism; thus, they may be under selection during the adaptive evolution of deep-sea vesicomyids. In this study, the mitochondrial genome (mitogenome) of the vesicomyid bivalve Calyptogena marissinica was sequenced with Illumina sequencing. The mitogenome of C. marissinica is 17,374 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL) and 22 transfer RNA genes. All of these genes are encoded on the heavy strand. Some special elements, such as tandem repeat sequences, “G(A)nT” motifs and AT-rich sequences, were observed in the control region of the C. marissinica mitogenome, which is involved in the regulation of replication and transcription of the mitogenome and may be helpful in adjusting the mitochondrial energy metabolism of organisms to adapt to the deep-sea chemosynthetic environment. The gene arrangement of protein-coding genes was identical to that of other sequenced vesicomyids. Phylogenetic analyses clustered C. marissinica with previously reported vesicomyid bivalves with high support values. Positive selection analysis revealed evidence of adaptive change in the mitogenome of Vesicomyidae. Ten potentially important adaptive residues were identified, which were located in cox1, cox3, cob, nad2, nad4 and nad5. Overall, this study sheds light on the mitogenomic adaptation of vesicomyid bivalves that inhabit the deep-sea chemosynthetic environment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Gong
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixing Sui
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Ngatia JN, Lan TM, Dinh TD, Zhang L, Ahmed AK, Xu YC. Signals of positive selection in mitochondrial protein-coding genes of woolly mammoth: Adaptation to extreme environments? Ecol Evol 2019; 9:6821-6832. [PMID: 31380018 PMCID: PMC6662336 DOI: 10.1002/ece3.5250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
The mammoths originated in warm and equatorial Africa and later colonized cold and high-latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution. However, little is yet known in this regard. In this study, we analyzed mitochondrial protein-coding genes (MPCGs) sequences of 75 broadly distributed woolly mammoths (Mammuthus primigenius) to test for signatures of positive selection. Results showed that a total of eleven amino acid sites in six genes, namely ND1, ND4, ND5, ND6, CYTB, and ATP6, displayed strong evidence of positive selection. Two sites were located in close proximity to proton-translocation channels in mitochondrial complex I. Biochemical and homology protein structure modeling analyses demonstrated that five amino acid substitutions in ND1, ND5, and ND6 might have influenced the performance of protein-protein interaction among subunits of complex I, and three substitutions in CYTB and ATP6 might have influenced the performance of metabolic regulatory chain. These findings suggest metabolic adaptations in the mitogenome of woolly mammoths in relation to extreme environments and provide a basis for further tests on the significance of the variations on other systems.
Collapse
Affiliation(s)
| | - Tian Ming Lan
- BGI‐ShenzhenShenzhenChina
- Laboratory of Genomics and Molecular Biomedicine, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- China National Genebank, BGI‐ShenzhenShenzhenChina
| | - Thi Dao Dinh
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Le Zhang
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | | | - Yan Chun Xu
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
- State Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and UtilizationHarbinChina
- State Forestry and Grassland Administration Detecting Centre of WildlifeHarbinChina
| |
Collapse
|
32
|
Mu W, Liu J, Zhang H. Complete mitochondrial genome of Benthodytes marianensis (Holothuroidea: Elasipodida: Psychropotidae): Insight into deep sea adaptation in the sea cucumber. PLoS One 2018; 13:e0208051. [PMID: 30500836 PMCID: PMC6267960 DOI: 10.1371/journal.pone.0208051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
Complete mitochondrial genomes play important roles in studying genome evolution, phylogenetic relationships, and species identification. Sea cucumbers (Holothuroidea) are ecologically important and diverse members, living from the shallow waters to the hadal trench. In this study, we present the mitochondrial genome sequence of the sea cucumber Benthodytes marianensis collected from the Mariana Trench. To our knowledge, this is the first reported mitochondrial genome from the genus Benthodytes. This complete mitochondrial genome is 17567 bp in length and consists of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes (duplication of two tRNAs: trnL and trnS). Most of these genes are coded on the positive strand except for one protein-coding gene (nad6) and five tRNA genes which are coded on the negative strand. Two putative control regions (CRs) have been found in the B. marianensis mitogenome. We compared the order of genes from the 10 available holothurian mitogenomes and found a novel gene arrangement in B. marianensis. Phylogenetic analysis revealed that B. marianensis clustered with Peniagone sp. YYH-2013, forming the deep-sea Elasipodida clade. Positive selection analysis showed that eleven residues (24 S, 45 S, 185 S, 201 G, 211 F and 313 N in nad2; 108 S, 114 S, 322 C, 400 T and 427 S in nad4) were positively selected sites with high posterior probabilities. We predict that nad2 and nad4 may be the important candidate genes for the further investigation of the adaptation of B. marianensis to the deep-sea environment.
Collapse
Affiliation(s)
- Wendan Mu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- * E-mail:
| |
Collapse
|
33
|
Mu W, Liu J, Zhang H. The first complete mitochondrial genome of the Mariana Trench Freyastera benthophila (Asteroidea: Brisingida: Brisingidae) allows insights into the deep-sea adaptive evolution of Brisingida. Ecol Evol 2018; 8:10673-10686. [PMID: 30519397 PMCID: PMC6262923 DOI: 10.1002/ece3.4427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023] Open
Abstract
Starfish (phylum Echinodermata) are ecologically important and diverse members of marine ecosystems in all of the world's oceans, from the shallow water to the hadal zone. The deep sea is recognized as an extremely harsh environment on earth. In this study, we present the mitochondrial genome sequence of Mariana Trench starfish Freyastera benthophila, and this study is the first to explore in detail the mitochondrial genome of a deep-sea member of the order Brisingida. Similar to other starfish, it contained 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes (duplication of two tRNAs: trnL and trnS). Twenty-two of these genes are encoded on the positive strand, while the other 15 are encoded on the negative strand. The gene arrangement was identical to those of sequenced starfish. Phylogenetic analysis showed the deep-sea Brisingida as a sister taxon to the traditional members of the Asteriidae. Positive selection analysis indicated that five residues (8 N and 16 I in atp8, 47 D and 196 V in nad2, 599 N in nad5) were positively selected sites with high posterior probabilities. Compared these features with shallow sea starfish, we predict that variation specifically in atp8, nad2, and nad5 may play an important role in F. benthophila's adaptation to deep-sea environment.
Collapse
Affiliation(s)
- Wendan Mu
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Liu
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Haibin Zhang
- Institute of Deep‐Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| |
Collapse
|
34
|
Xu S, Wang Z, Zhang Y, Gao T, Zou J, Zhang X. Evidence for intra-mitochondrial variation in population genetic structure of Platycephalus sp.1 In the Northwestern Pacific. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:281-288. [PMID: 30196742 DOI: 10.1080/24701394.2018.1484119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding evolutionary dynamics of population structure and genetic diversity of marine fish species is of great importance for fishery management and resource conservation. Platycephalus sp.1 is a commercially important marine fish in the Northwestern Pacific. Yet, current understanding of population genetic patterns of Platycephalus sp.1 remains limited. In this study, the Platycephalus sp.1 individuals from four populations in the Northwestern Pacific, which cover large geographic distances and latitudinal gradients, were sampled to examine genetic diversity and population structure by investigating the mitochondrial sequences of Cytochrome b (CYTB, 1141 bp) and control region (CR, 458 bp), and then to assess intra-mitochondrial genetic variability by using a combination of population- and individual-based analytical approaches. Moderate to low levels of genetic diversity were observed in sampled populations by investigating both CR and CYTB datasets. In CR dataset, weak genetic differentiation among populations were observed and population Tokyo Bay was significantly differentiated with other sampled populations. In CYTB dataset, lower genetic differentiations were observed and population Beihai (BH) was significantly differentiated. A non-synonymous substitution was predominantly detected in population BH, and such substitution was tested as a significantly positive selective site in natural selection tests. Based on these findings, we propose that local adaptation influenced by natural selection contributes largely to the intra-mitochondrial variation in Platycephalus sp.1 populations. The present study provides new perspectives on the population genetic structure of Platycephalus sp.1, which could have important implications for the sound management and conservation of this fishery species.
Collapse
Affiliation(s)
- Shengyong Xu
- a National Engineering Research Center For Marine Aquaculture , Zhejiang Ocean University , Zhoushan , P.R. China
| | - Zhiyang Wang
- b School of Ocean , Yantai University , Yantai , P.R. China
| | - Yan Zhang
- c Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences , Qingdao , P.R. China
| | - Tianxiang Gao
- a National Engineering Research Center For Marine Aquaculture , Zhejiang Ocean University , Zhoushan , P.R. China
| | - Jianwei Zou
- d Beihai Fisheries Technical Extension station , Beihai , P.R. China
| | - Xiumei Zhang
- a National Engineering Research Center For Marine Aquaculture , Zhejiang Ocean University , Zhoushan , P.R. China
| |
Collapse
|
35
|
Botero-Castro F, Tilak MK, Justy F, Catzeflis F, Delsuc F, Douzery EJP. In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biol Evol 2018; 10:2218-2239. [PMID: 29931241 PMCID: PMC6127110 DOI: 10.1093/gbe/evy120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.
Collapse
Affiliation(s)
- Fidel Botero-Castro
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - François Catzeflis
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
36
|
Tavares WC, Seuánez HN. Changes in selection intensity on the mitogenome of subterranean and fossorial rodents respective to aboveground species. Mamm Genome 2018; 29:353-363. [DOI: 10.1007/s00335-018-9748-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|
37
|
Yang H, Li T, Dang K, Bu W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics 2018; 19:264. [PMID: 29669515 PMCID: PMC5907366 DOI: 10.1186/s12864-018-4650-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 04/08/2018] [Indexed: 01/24/2023] Open
Abstract
Background Mitochondrial genome (mt-genome) data can potentially return artefactual relationships in the higher-level phylogenetic inference of insects due to the biases of accelerated substitution rates and compositional heterogeneity. Previous studies based on mt-genome data alone showed a paraphyly of Cimicomorpha (Insecta, Hemiptera) due to the positions of the families Tingidae and Reduviidae rather than the monophyly that was supported based on morphological characters, morphological and molecular combined data and large scale molecular datasets. Various strategies have been proposed to ameliorate the effects of potential mt-genome biases, including dense taxon sampling, removal of third codon positions or purine-pyrimidine coding and the use of site-heterogeneous models. In this study, we sequenced the mt-genomes of five additional Tingidae species and discussed the compositional and mutational rate heterogeneity in mt-genomes and its effect on the phylogenetic inferences of Cimicomorpha by implementing the bias-reduction strategies mentioned above. Results Heterogeneity in nucleotide composition and mutational biases were found in mt protein-coding genes, and the third codon exhibited high levels of saturation. Dense taxon sampling of Tingidae and Reduviidae and the other common strategies mentioned above were insufficient to recover the monophyly of the well-established group Cimicomorpha. When the sites with weak phylogenetic signals in the dataset were removed, the remaining dataset of mt-genomes can support the monophyly of Cimicomorpha; this support demonstrates that mt-genomes possess strong phylogenetic signals for the inference of higher-level phylogeny of this group. Comparison of the ratio of the removal of amino acids for each PCG showed that ATP8 has the highest ratio while CO1 has the lowest. This pattern is largely congruent with the evolutionary rate of 13 PCGs that ATP8 represents the highest evolutionary rate, whereas CO1 appears to be the lowest. Notably, the value of Ka/Ks ratios of all PCGs is less than 1, indicating that these genes are likely evolving under purifying selection. Conclusions Our results demonstrate that mt-genomes have sites with strong phylogenetic signals for the inference of higher-level phylogeny of Cimicomorpha. Consequently, bioinformatic approaches to removing sites with weak phylogenetic signals in mt-genome without relying on an a priori tree topology would greatly improve this field. Electronic supplementary material The online version of this article (10.1186/s12864-018-4650-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huanhuan Yang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Teng Li
- Institute of Zoology and Developmental Biology, College of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Kai Dang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
38
|
Mori S, Matsunami M. Signature of positive selection in mitochondrial DNA in Cetartiodactyla. Genes Genet Syst 2018; 93:65-73. [PMID: 29643269 DOI: 10.1266/ggs.17-00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acceleration of the amino acid substitution rate is a good indicator of positive selection in adaptive evolutionary changes of functional genes. Genomic information about mammals has become readily available in recent years, as many researchers have attempted to clarify the adaptive evolution of mammals by examining evolutionary rate change based on multiple loci. The order Cetartiodactyla (Artiodactyla and Cetacea) is one of the most diverse orders of mammals. Species in this order are found throughout all continents and seas, except Antarctica, and they exhibit wide variation in morphology and habitat. Here, we focused on the metabolism-related genes of mitochondrial DNA (mtDNA) in species of the order Cetartiodactyla using 191 mtDNA sequences available in databases. Based on comparisons of the dN/dS ratio (ω) in 12 protein-coding genes, ATP8 was shown to have a higher ω value (ω = 0.247) throughout Cetartiodactyla than the other 11 genes (ω < 0.05). In a branch-site analysis of ATP8 sequences, a markedly higher ω value of 0.801 was observed in the ancestral lineage of the clade of Cetacea, which is indicative of adaptive evolution. Through efforts to detect positively selected amino acids, codon positions 52 and 54 of ATP8 were shown to have experienced positive selective pressure during the course of evolution; multiple substitutions have occurred at these sites throughout the cetacean lineage. At position 52, glutamic acid was replaced with asparagine, and, at position 54, lysine was replaced with non-charged amino acids. These sites are conserved in most Artiodactyla. These results imply that the ancestor of cetaceans underwent accelerated amino acid changes in ATP8 and replacements at codons 52 and 54, which adjusted metabolism to adapt to the marine environment.
Collapse
Affiliation(s)
- Satoko Mori
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| | - Masatoshi Matsunami
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University.,Graduate School of Medicine, University of the Ryukyus
| |
Collapse
|
39
|
Ramos B, González-Acuña D, Loyola DE, Johnson WE, Parker PG, Massaro M, Dantas GPM, Miranda MD, Vianna JA. Landscape genomics: natural selection drives the evolution of mitogenome in penguins. BMC Genomics 2018; 19:53. [PMID: 29338715 PMCID: PMC5771141 DOI: 10.1186/s12864-017-4424-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. Results We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks < 1) across the mitochondrial genome, which is consistent with the hypothesis that purifying selection is constraining mitogenome evolution to maintain Oxidative phosphorylation (OXPHOS) proteins and functionality. Pairwise species maximum-likelihood analyses of selection at codon sites suggest positive selection has occurred on ATP8 (Fixed-Effects Likelihood, FEL) and ND4 (Single Likelihood Ancestral Counting, SLAC) in all penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. Conclusions These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be particularly useful for developing predictive models of how these species may respond to severe climatic changes in the future. Electronic supplementary material The online version of this article (10.1186/s12864-017-4424-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Ramos
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile.,Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Republica 252, Santiago, Chile
| | - Daniel González-Acuña
- Departamento de Ciencias Pecuarias, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, 3780000, Chillán, CP, Chile
| | - David E Loyola
- Centro Nacional de Genómica y Bioinformática, Portugal 49, Santiago, Chile.,I+DEA Biotech, Av. Central 3413, Padre Hurtado, Santiago, Chile
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Patricia G Parker
- University of Missouri St Louis and Saint Louis Zoo, One University Blvd., St. Louis, MO, 63121-4400, USA
| | - Melanie Massaro
- School of Environmental Sciences and Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW, Australia
| | - Gisele P M Dantas
- Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar 500, Coração Eucarístico, Belo Horizonte, MG, Brazil
| | - Marcelo D Miranda
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile
| | - Juliana A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile. .,Centro de Cambio Global UC, Santiago, Chile.
| |
Collapse
|
40
|
Sun S, Hui M, Wang M, Sha Z. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:42-52. [PMID: 29145028 DOI: 10.1016/j.cbd.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
Deep-sea hydrothermal vent is one of the most extreme environments on Earth with low oxygen and high levels of toxins. Decapod species from the family Alvinocarididae have colonized and successfully adapted to this extremely harsh environment. Mitochondria plays a vital role in oxygen usage and energy metabolism, thus it may be under selection in the adaptive evolution of the hydrothermal vent shrimps. In this study, the mitochondrial genome (mitogenome) of alvinocaridid shrimp Shinkaicaris leurokolos (Kikuchi & Hashimoto, 2000) was determined through Illumina sequencing. The mitogenome of S. leurokolos was 15,903bp in length, containing 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of sequenced alvinocaridids. It has the longest concatenated sequences of protein-coding genes, tRNAs and shortest pooled rRNAs among the alvinocaridids. The control regions (CRs) of alvinocaridid were significantly longer (p<0.01) than those of the other caridaen. The alignment of the alvinocaridid CRs revealed two conserved sequence blocks (CSBs), and each of the CSBs included a noncanonical open reading frame (ORF), which may be involved in adjusting mitochondrial energy metabolism to adapt to the hydrothermal environment. Phylogenetic analysis supported that the deep-sea hydrothermal vent shrimps may have originated from those living in shallow area. Positive selection analysis reveals the evidence of adaptive change in the mitogenome of Alvinocarididae. Thirty potentially important adaptive residues were identified, which were located in atp6, cox1, cox3, cytb and nad1-5. This study explores the mitochondrial genetic basis of hydrothermal vent adaptation in alvinocaridid for the first time, and provides valuable clues regarding the adaptation.
Collapse
Affiliation(s)
- Shao'e Sun
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Ming Hui
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China
| | - Zhongli Sha
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Tammone MN, Pardiñas UFJ, Lacey EA. Contrasting patterns of Holocene genetic variation in two parapatric species of Ctenomys from Northern Patagonia, Argentina. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mauro N Tammone
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Argentina
- Programa de Estudios Aplicados a la Conservación del Parque Nacional Nahuel Huapi (CENAC-PNNH, CONICET), Argentina
| | | | - Eileen A Lacey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, USA
| |
Collapse
|
42
|
Mapelli FJ, Mora MS, Lancia JP, Gómez Fernández MJ, Mirol PM, Kittlein MJ. Evolution and phylogenetic relationships in subterranean rodents of the Ctenomys mendocinus species complex: Effects of Late Quaternary landscape changes of Central Argentina. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Tomasco IH, Boullosa N, Tandonnet S, Hoffmann FG, Lessa EP. Nucleotide sequence and results of test of adaptive evolution in the α-globin gene of octodontoid rodents. Data Brief 2017; 15:517-521. [PMID: 29085872 PMCID: PMC5650648 DOI: 10.1016/j.dib.2017.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022] Open
Abstract
The data presented in this article are related to the research article entitled “Molecular adaptive convergence in the α-globin gene in subterranean octodontid rodents” (Tomasco et al., 2017) [1]. This article shows the nucleotide sequences of α-globin subunit gene of hemoglobin of several South American caviomorph rodents, including subterranean and fossorial species. These sequences are deposited in Genbank, with accession numbers ranging from MF169881 to MF169898. Of a total of 429 nucleotides analyzed (143 codons), 100 variable sites and 43 amino acid replacements were reported. In this article we also show the results of TreeSaap (Woolley et al., 2003) [2] and MEME (Murrell et al., 2012) [3], that identified some replacement changes as interesting for future studies of adaptive evolution in this large rodent radiation.
Collapse
Affiliation(s)
- I H Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - N Boullosa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | | | - F G Hoffmann
- Department of Biochemistry and Molecular Biology, Mississippi State University, MS, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - E P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
44
|
Signatures of mito-nuclear discordance in Schistosoma turkestanicum indicate a complex evolutionary history of emergence in Europe. Parasitology 2017; 144:1752-1762. [PMID: 28747240 DOI: 10.1017/s0031182017000920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High levels of molecular diversity were identified in mitochondrial cytochrome c oxidase (cox1) gene sequences of Schistosoma turkestanicum from Hungary. These cox1 sequences were all specific to Hungary which contrasted with the low levels of diversity seen in the nuclear internal transcribed spacer region (ITS) sequences, the majority of which were shared between China and Iran isolates. Measures of within and between host molecular variation within S. turkestanicum showed there to be substantial differences in molecular diversity, with cox1 being significantly more diverse than the ITS. Measures of haplotype frequencies revealed that each host contained its own subpopulation of genetically unique parasites with significant levels of differentiation. Pairwise mismatch analysis of cox1 sequences indicated S. turkestanicum populations to have a bimodal pairwise difference distribution and to be stable unlike the ITS sequences, which appeared to have undergone a recent population expansion event. Positive selection was also detected in the cox1 sequences, and biochemical modelling of the resulting protein illustrated significant mutational events causing an alteration to the isoelectric point of the cox1 protein, potentially altering metabolism. The evolutionary signature from the cox1 indicates local adaptation and long establishment of S. turkestanicum in Hungary with continual introgression of nuclear genes from Asian isolates. These processes have led to the occurrence of mito-nuclear discordance in a schistosome population.
Collapse
|
45
|
Tomasco IH, Boullosa N, Hoffmann FG, Lessa EP. Molecular adaptive convergence in the α-globin gene in subterranean octodontid rodents. Gene 2017; 628:275-280. [PMID: 28735726 DOI: 10.1016/j.gene.2017.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Tuco-tucos (Ctenomys) and related coruros (Spalacopus) are South American subterranean rodents. An energetically demanding lifestyle within the hypoxic/hypercapnic underground atmosphere may change the selective regime on genes involved in O2 transport in blood. In addition, some species of tuco-tucos may be found at high altitude, thus facing additional reductions in changes O2 availabily. We examined sequence variation in the alpha globin subunit gene of hemoglobine in these lineages, within a robust phylogenetic context. Using different approaches (classical and Bayesian maximum likelihood (PAML/Datamonkey) and alternatives methods (TreeSAAP)) we found at least 2 sites with evidence of positive selection in the basal branch of Octodontidae, but not in tuco-tucos. These results suggest some adaptive changes associated to fossoriality, but not strictly to life underground.
Collapse
Affiliation(s)
- Ivanna H Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| | - Nicolás Boullosa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| | - Federico G Hoffmann
- Department of Biochemistry and Molecular Biology, Mississippi State University, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA.
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| |
Collapse
|
46
|
Xia JH, Li HL, Zhang Y, Meng ZN, Lin HR. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:511-524. [PMID: 28423967 DOI: 10.1080/24701394.2017.1315567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.
Collapse
Affiliation(s)
- Jun Hong Xia
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Hong Lian Li
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Yong Zhang
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Zi Ning Meng
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Hao Ran Lin
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| |
Collapse
|
47
|
Testing for the Occurrence of Selective Episodes During the Divergence of Otophysan Fishes: Insights from Mitogenomics. J Mol Evol 2017; 84:162-173. [PMID: 28378191 DOI: 10.1007/s00239-017-9790-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 10/19/2022]
Abstract
How natural selection shapes biodiversity constitutes a topic of renewed interest during the last few decades. The division Otophysi comprises approximately two-thirds of freshwater fish diversity and probably underwent an extensive adaptive radiation derived from a single invasion of the supercontinent Pangaea, giving place to the evolution of the main five Otophysan lineages during a short period of time. Little is known about the factors involved in the processes that lead to lineage diversification among this group of fishes and identifying directional selection acting over protein-coding genes could offer clues about the processes acting on species diversification. The main objective of this study was to explore the otophysan mitochondrial genome evolution, in order to account for the possible signatures of selective events in this lineage, and to explore for the functional connotations of these molecular substitutions. Mainly, three different approaches were used: the "ω-based" BS-REL and MEME methods, implemented in the DATAMONKEY web server, and analysis of selection on amino acid properties, implemented in the software TreeSAAP. We found evidence of selective episodes along several branches of the evolutionary history of othophysan fishes. Analyses carried out using the BS-REL algorithm suggest episodic diversifying selection at basal branches of the otophysan lineage, which was also supported by analyses implemented in MEME and TreeSAAP. These results suggest that throughout the Siluriformes radiation, an important number of adaptive changes occurred in their mitochondrial genome. The metabolic consequences and ecological correlates of these molecular substitutions should be addressed in future studies.
Collapse
|
48
|
Korkmaz EM, Aydemir HB, Temel B, Budak M, Başıbüyük HH. Mitogenome evolution in Cephini (Hymenoptera: Cephidae): Evidence for parallel adaptive evolution. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Ben Slimen H, Schaschl H, Knauer F, Suchentrunk F. Selection on the mitochondrial ATP synthase 6 and the NADH dehydrogenase 2 genes in hares (Lepus capensis L., 1758) from a steep ecological gradient in North Africa. BMC Evol Biol 2017; 17:46. [PMID: 28173765 PMCID: PMC5297179 DOI: 10.1186/s12862-017-0896-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/26/2017] [Indexed: 11/30/2022] Open
Abstract
Background Recent studies of selection on mitochondrial (mt) OXPHOS genes suggest adaptation due mainly to environmental variation. In this context, Tunisian hares that display several external phenotypes with phylogenetically rather homogenous gene pool and shallow population structure provide a good precondition to detect positive selection on mt genes related to environmental/climatic variation, specifically ambient temperature and precipitation. Results We used codon-based methods along with population genetic data to test for positive selection on ATPase synthase 6 (ATP6) and NADH dehydrogenase 2 (ND2) of cape hares (Lepus capensis) collected along a steep ecological gradient in Tunisia. We found significantly higher differentiation at the ATP6 locus across Tunisia, with sub-humid Mediterranean, semi-arid, and arid Sahara climate than for fourteen unlinked supposedly neutrally evolving nuclear microsatellites and mt control region sequences. This suggested positive selection on ATP6 sequences, which was confirmed by several codon-based tests for one sequence site that together with a second site translated into four different amino acids. Positive selection on ND2 sequences was also confirmed by several codon-based tests. The corresponding frequencies of the two most prevalent variants at each locus varied significantly across climate regions, and our logistic general linear models of occurrence of those proteins indicated significant effects of mean annual temperature for ATP6 and mean minimum temperature of the coldest month of the year for ND2, independent of geographical location, annual precipitation, and the respective co-occurring protein at the second locus. Moreover, presence of the ancestral ATP6 protein, as inferred from phylogenetic networks, was positively affected by the simultaneous presence of the derived ND2 protein and vice versa, independent of temperature, precipitation, or geographic location. Finally, we obtained a significant coevolution signal for the ancestral ATP6 and derived ND2 sequences and vice versa. Conclusions positive selection was strongly suggested by the population genetic approach and the codon-based tests in both mtDNA genes. Moreover, the two most prevalent proteins at the ATP6 locus were distributed at significantly varying frequencies across the study area with a significant effect of mean annual temperature on the occurrence of the ATP6 proteins independent of geographical coordinates and the co-occuring ND2 protein variant. For ND2, occurrence of the two most frequent protein variants was significantly influenced by the mean minimum temperature of the coldest month, independent of the co-occurring ATP6 protein variant and geographical coordinates. This strongly suggests direct involvement of ambient temperature in the adaptation of the studied mtOXPHOS genes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0896-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hichem Ben Slimen
- UR Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique (GIRC), Université de Tunis El-Manar, 2092, El Manar, Tunisia. .,Institut Supérieur de Biotechnologie de Béja, Beja, 9000, Tunisia.
| | - Helmut Schaschl
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
50
|
Marcy AE, Hadly EA, Sherratt E, Garland K, Weisbecker V. Getting a head in hard soils: Convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (Thomomys). BMC Evol Biol 2016; 16:207. [PMID: 27724858 PMCID: PMC5057207 DOI: 10.1186/s12862-016-0782-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
Background High morphological diversity can occur in closely related animals when selection favors morphologies that are subject to intrinsic biological constraints. A good example is subterranean rodents of the genus Thomomys, one of the most taxonomically and morphologically diverse mammalian genera. Highly procumbent, tooth-digging rodent skull shapes are often geometric consequences of increased body size. Indeed, larger-bodied Thomomys species tend to inhabit harder soils. We used geometric morphometric analyses to investigate the interplay between soil hardness (the main extrinsic selection pressure on fossorial mammals) and allometry (i.e. shape change due to size change; generally considered the main intrinsic factor) on crania and humeri in this fast-evolving mammalian clade. Results Larger Thomomys species/subspecies tend to have more procumbent cranial shapes with some exceptions, including a small-bodied species inhabiting hard soils. Counter to earlier suggestions, cranial shape within Thomomys does not follow a genus-wide allometric pattern as even regional subpopulations differ in allometric slopes. In contrast, humeral shape varies less with body size and with soil hardness. Soft-soil taxa have larger humeral muscle attachment sites but retain an orthodont (non-procumbent) cranial morphology. In intermediate soils, two pairs of sister taxa diverge through differential modifications on either the humerus or the cranium. In the hardest soils, both humeral and cranial morphology are derived through large muscle attachment sites and a high degree of procumbency. Conclusions Our results show that conflict between morphological function and intrinsic allometric patterning can quickly and differentially alter the rodent skeleton, especially the skull. In addition, we found a new case of convergent evolution of incisor procumbency among large-, medium-, and small-sized species inhabiting hard soils. This occurs through different combinations of allometric and non-allometric changes, contributing to shape diversity within the genus. The strong influence of allometry on cranial shape appears to confirm suggestions that developmental change underlies mammalian cranial shape divergences, but this requires confirmation from ontogenetic studies. Our findings illustrate how a variety of intrinsic processes, resulting in species-level convergence, could sustain a genus-level range across a variety of extrinsic environments. This might represent a mechanism for observations of genus-level niche conservation despite species extinctions in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0782-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariel E Marcy
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. .,Department of Biology, Stanford University, Stanford, 94305-5020, CA, USA.
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, 94305-5020, CA, USA
| | - Emma Sherratt
- Department of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Kathleen Garland
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Vera Weisbecker
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|