1
|
Vaga CF, Seiblitz IGL, Stolarski J, Capel KCC, Quattrini AM, Cairns SD, Huang D, Quek RZB, Kitahara MV. 300 million years apart: the extreme case of macromorphological skeletal convergence between deltocyathids and a turbinoliid coral (Anthozoa, Scleractinia). INVERTEBR SYST 2024; 38:IS23053. [PMID: 38744500 DOI: 10.1071/is23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms. ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E.
Collapse
Affiliation(s)
- C F Vaga
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - I G L Seiblitz
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - K C C Capel
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Invertebrate Department, National Museum of Rio de Janeiro, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - D Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Conservatory Drive, Singapore 117377, Singapore; and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - R Z B Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; and Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| | - M V Kitahara
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| |
Collapse
|
2
|
Vaga CF, Seiblitz IGL, Capel KCC, Kitahara MV. The mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus (Hexacorallia; Scleractinia): new insights on the phylogeny of the family Caryophylliidae. Mol Biol Rep 2022; 49:12269-12273. [PMID: 36264418 DOI: 10.1007/s11033-022-08029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Caryophylliidae is one of the most diverse scleractinian families, however it was recovered as polyphyletic in multiple molecular studies. Recently, the mitochondrial gene order was proposed as a character for a taxonomic revision of the family. Here we describe the first mitogenome of the caryophylliid genus Crispatotrochus, whose phylogenetic position remains uncertain. METHODS AND RESULTS The complete mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus were sequenced, assembled, and annotated. The two mitogenomes are identical and circular, have a length of 16,536 bp, a GC content of 35.9%, and contain 13 protein-coding genes, 2 ribosomal RNAs and 2 transfer RNAs. Both species have a transposition of a three gene block - cob, nad2, and nad6 - similarly to a group of caryophylliid genera that were recovered as monophyletic, including the type genus (Caryophyllia) of the family. The phylogenetic analyses recovered Crispatotrochus within the clade that presents the gene rearrangement and specifically as sister taxa of the genus Caryophyllia, a result consistent with previous studies and the similar gross morphology of the two genera. CONCLUSIONS We determined the mitochondrial genomes of the genus Crispatotrochus to investigate their relations within Scleractinia. Results from this study provide insights on the phylogenetic position of the genus and corroborate that the mitochondrial gene order could be used as taxonomic character for the family Caryophylliidae.
Collapse
Affiliation(s)
- C F Vaga
- Centre for Marine Biology, University of Sao Paulo, Sao Sebastiao, 11612-109, Brazil. .,Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil.
| | - I G L Seiblitz
- Centre for Marine Biology, University of Sao Paulo, Sao Sebastiao, 11612-109, Brazil.,Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| | - K C C Capel
- Centre for Marine Biology, University of Sao Paulo, Sao Sebastiao, 11612-109, Brazil.,Department of Marine Science, Federal University of Sao Paulo, Santos, 11070-100, Brazil
| | - M V Kitahara
- Centre for Marine Biology, University of Sao Paulo, Sao Sebastiao, 11612-109, Brazil.,Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, MRC 163, PO Box 37012, Washington, DC, 20013-7012, USA
| |
Collapse
|
3
|
Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol Phylogenet Evol 2022; 175:107565. [PMID: 35787457 DOI: 10.1016/j.ympev.2022.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
Molecularly, the family Caryophylliidae is polyphyletic and different sets of genetic data converge towards a consensus that a taxonomic review of this family is necessary. Overall, the order of genes in the mitochondrial genome (mitogenome) together with DNA sequences have been used to successfully untangle evolutionary relationships in several groups of organisms. Published mitogenomes of two caryophylliid genera (Desmophyllum and Solenosmilia) present a transposition of the gene block containing cob, nad2, and nad6, which is located between nad5 5' exon and trnW, while that of Polycyathus chaishanensis presents the same gene order as the majority of scleractinian corals. In molecular-based evolutionary reconstructions, caryophylliids that have the mitochondrial gene rearrangement were recovered as a monophyletic lineage ("true" caryophylliids), while members of the genus Polycyathus were placed in a different position. In this study, additional mitogenomes of this family were assembled and included in evolutionary reconstructions of Scleractinia in order to improve our understanding on whether the mitogenome gene rearrangement is limited to and, therefore, could be a synapomorphy of the actual members of Caryophylliidae. Specimens of Caryophyllia scobinosa, Premocyathus sp., Heterocyathus sulcatus, and Trochocyathus caryophylloides, as well as Desmophyllum pertusum and Solenosmilia variabilis from the Southwest Atlantic were sequenced using Illumina platforms. Then, mitochondrial genomes were assembled and annotated, and nuclear datasets were recovered in-silico from assembled contigs using a previously published set of baits. Evolutionary reconstructions were performed using mitochondrial and nuclear datasets and based on Maximum Likelihood and Bayesian Inference. Obtained mitogenomes are circular and range between 15,816 and 18,225 bp in size and from 30.76% to 36.63% in GC content. The gene rearrangement is only seen in C. scobinosa, D. pertusum, Premocyathus sp., and S. variabilis, which were recovered as a monophyletic clade in both mitochondrial and nuclear phylogenies. On the other hand, the "caryophylliids" with the canonical mitogenome gene order were not recovered within this clade. Differences in features of the skeleton of "true" caryophylliids in comparison to traditional members of the family were observed and offer further support that the gene rearrangement might be seen as a synapomorphy of family Caryophylliidae.
Collapse
Affiliation(s)
- I G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - C F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - K C C Capel
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - M V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil.
| |
Collapse
|
4
|
Lucas T, Vincent B, Eric P. Translocation of mitochondrial DNA into the nuclear genome blurs phylogeographic and conservation genetic studies in seabirds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211888. [PMID: 35719890 PMCID: PMC9198517 DOI: 10.1098/rsos.211888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Mitochondrial DNA (mtDNA) translocated into the nuclear genome (numt), when co-analysed with genuine mtDNA, could plague phylogeographic studies. To evaluate numt-related biases in population genetics parameters in birds, which are prone to accumulating numts, we targeted the mitochondrial mt-cytb gene. We looked at 13 populations of Audubon's shearwater (Puffinus lherminieri), including five mitochondrial lineages. mt-cytb homologue and paralogue (numt) sequences were determined by Sanger sequencing with and without prior exonuclease digestion of nuclear DNA. Numts formed monophyletic clades corresponding to three of the five mitochondrial lineages tested (the remaining two forming a paraphyletic group). Nineteen percent of numt alleles fell outside of their expected mitochondrial clade, a pattern consistent with multiple translocation events, incomplete lineage sorting (ILS), and/or introgression. When co-analysing mt-cytb paralogues and homologues, excluding individuals with ambiguities underestimates genetic diversity (4%) and differentiation (11%) among least-sampled populations. Removing ambiguous sites drops the proportion of inter-lineage genetic variance by 63%. While co-analysing numts with mitochondrial sequences can lead to severe bias and information loss in bird phylogeographic studies, the separate analysis of genuine mitochondrial loci and their nuclear paralogues can shed light on numt molecular evolution, as well as evolutionary processes such as ILS and introgression.
Collapse
Affiliation(s)
- Torres Lucas
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Universite, Villiers en Bois, France
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - La Rochelle Université, La Rochelle, France
| | - Bretagnolle Vincent
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| | - Pante Eric
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - La Rochelle Université, La Rochelle, France
| |
Collapse
|
5
|
Xiao J, Tian P, Guo F, Yu S, Wang W, Wang X, Niu W. Characterization of the complete mitochondrial genome of Diploastrea heliopora and phylogeny of the scleractinia species which have group I introns in their COI genes. Saudi J Biol Sci 2021; 28:7054-7060. [PMID: 34867006 PMCID: PMC8626255 DOI: 10.1016/j.sjbs.2021.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/04/2022] Open
Abstract
Mitochondrial genome DNA is a powerful marker for resolving phylogenetic relationships among scleractinian corals. Here, we decode the complete mitochondrial genome of Diploastrea heliopora (Lamarck, 1816) for the first time. The general features are 18 363 bp in length, and conventionally, with 13 protein coding genes, two ribosomal RNAs, and two transfer RNAs. Gene arrangement and distribution are similar to other scleractinian corals. Moreover, the COI gene of D. heliopora is broken up into two parts by a complex group I intron. This intron is 1076 bases in length and contains helical structures (P1-P10, except P2) and four conserved regions (P, Q, R, and S). The mitochondrial genome of D. heliopora has asymmetric base composition (13.03% C, 20.29% G, 25.91% A, and 40.77% for T). Based on concatenated protein coding genes, ML and BI trees show similar phylogenetic relationship: D. heliopora clustered closely with Sclerophyllia maxima and Echinophyllia aspera into the robust branch. The data and conclusion in this study are reference for further phylogenetic studies of corals.
Collapse
Affiliation(s)
- Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Feng Guo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuangen Yu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaolei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
6
|
The Mitochondrial Genome of the Sea Anemone Stichodactyla haddoni Reveals Catalytic Introns, Insertion-Like Element, and Unexpected Phylogeny. Life (Basel) 2021; 11:life11050402. [PMID: 33924866 PMCID: PMC8146996 DOI: 10.3390/life11050402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
A hallmark of sea anemone mitochondrial genomes (mitogenomes) is the presence of complex catalytic group I introns. Here, we report the complete mitogenome and corresponding transcriptome of the carpet sea anemone Stichodactyla haddoni (family Stichodactylidae). The mitogenome is vertebrate-like in size, organization, and gene content. Two mitochondrial genes encoding NADH dehydrogenase subunit 5 (ND5) and cytochrome c oxidase subunit I (COI) are interrupted with complex group I introns, and one of the introns (ND5-717) harbors two conventional mitochondrial genes (ND1 and ND3) within its sequence. All the mitochondrial genes, including the group I introns, are expressed at the RNA level. Nonconventional and optional mitochondrial genes are present in the mitogenome of S. haddoni. One of these gene codes for a COI-884 intron homing endonuclease and is organized in-frame with the upstream COI exon. The insertion-like orfA is expressed as RNA and translocated in the mitogenome as compared with other sea anemones. Phylogenetic analyses based on complete nucleotide and derived protein sequences indicate that S. haddoni is embedded within the family Actiniidae, a finding that challenges current taxonomy.
Collapse
|
7
|
Seiblitz IGL, Capel KCC, Stolarski J, Quek ZBR, Huang D, Kitahara MV. The earliest diverging extant scleractinian corals recovered by mitochondrial genomes. Sci Rep 2020; 10:20714. [PMID: 33244171 PMCID: PMC7693180 DOI: 10.1038/s41598-020-77763-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging "Basal" lineage remains poorly studied compared to "Robust" and "Complex" corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confirm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as well as its microstructural differences with Gardineriidae. The fact that both families share features with family Kilbuchophylliidae ultimately points towards a Middle Ordovician origin for Scleractinia.
Collapse
Affiliation(s)
- Isabela G L Seiblitz
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil.
| | - Kátia C C Capel
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | | | | | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Marcelo V Kitahara
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| |
Collapse
|
8
|
Zhang S, Zhang YJ. Proposal of a new nomenclature for introns in protein-coding genes in fungal mitogenomes. IMA Fungus 2019; 10:15. [PMID: 32647619 PMCID: PMC7325650 DOI: 10.1186/s43008-019-0015-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fungal mitochondrial genes are often invaded by group I or II introns, which represent an ideal marker for understanding fungal evolution. A standard nomenclature of mitochondrial introns is needed to avoid confusion when comparing different fungal mitogenomes. Currently, there has been a standard nomenclature for introns present in rRNA genes, but there is a lack of a standard nomenclature for introns present in protein-coding genes. In this study, we propose a new nomenclature system for introns in fungal mitochondrial protein-coding genes based on (1) three-letter abbreviation of host scientific name, (2) host gene name, (3), one capital letter P (for group I introns), S (for group II introns), or U (for introns with unknown types), and (4) intron insertion site in the host gene according to the cyclosporin-producing fungus Tolypocladium inflatum. The suggested nomenclature was proved feasible by naming introns present in mitogenomes of 16 fungi of different phyla, including both basal and higher fungal lineages although minor adjustment of the nomenclature is needed to fit certain special conditions. The nomenclature also had the potential to name plant/protist/animal mitochondrial introns. We hope future studies follow the proposed nomenclature to ensure direct comparison across different studies.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 China
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
9
|
Chi SI, Dahl M, Emblem Å, Johansen SD. Giant group I intron in a mitochondrial genome is removed by RNA back-splicing. BMC Mol Biol 2019; 20:16. [PMID: 31153363 PMCID: PMC6545197 DOI: 10.1186/s12867-019-0134-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 05/23/2019] [Indexed: 01/29/2023] Open
Abstract
Background The mitochondrial genomes of mushroom corals (Corallimorpharia) are remarkable for harboring two complex group I introns; ND5-717 and COI-884. How these autocatalytic RNA elements interfere with mitochondrial RNA processing is currently not known. Here, we report experimental support for unconventional processing events of ND5-717 containing RNA. Results We obtained the complete mitochondrial genome sequences and corresponding mitochondrial transcriptomes of the two distantly related corallimorpharian species Ricordea yuma and Amplexidiscus fenestrafer. All mitochondrial genes were found to be expressed at the RNA-level. Both introns were perfectly removed by autocatalytic splicing, but COI-884 excision appeared more efficient than ND5-717. ND5-717 was organized into giant group I intron elements of 18.1 kb and 19.3 kb in A. fenestrafer and R. yuma, respectively. The intron harbored almost the entire mitochondrial genome embedded within the P8 peripheral segment. Conclusion ND5-717 was removed by group I intron splicing from a small primary transcript that contained a permutated intron–exon arrangement. The splicing pathway involved a circular exon-containing RNA intermediate, which is a hallmark of RNA back-splicing. ND5-717 represents the first reported natural group I intron that becomes excised by back-splicing from a permuted precursor RNA. Back-splicing may explain why Corallimorpharia mitochondrial genomes tolerate giant group I introns. Electronic supplementary material The online version of this article (10.1186/s12867-019-0134-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Mikael Dahl
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Åse Emblem
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. .,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
10
|
Stampar SN, Broe MB, Macrander J, Reitzel AM, Brugler MR, Daly M. Linear Mitochondrial Genome in Anthozoa (Cnidaria): A Case Study in Ceriantharia. Sci Rep 2019; 9:6094. [PMID: 30988357 PMCID: PMC6465557 DOI: 10.1038/s41598-019-42621-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Sequences and structural attributes of mitochondrial genomes have played a critical role in the clarification of relationships among Cnidaria, a key phylum of early-diverging animals. Among the major lineages of Cnidaria, Ceriantharia (“tube anemones”) remains one of the most enigmatic in terms of its phylogenetic position. We sequenced the mitochondrial genomes of two ceriantharians to see whether the complete organellar genome would provide more support for the phylogenetic placement of Ceriantharia. For both Isarachnanthus nocturnus and Pachycerianthus magnus, the mitochondrial gene sequences could not be assembled into a single circular genome. Instead, our analyses suggest that both species have mitochondrial genomes consisting of multiple linear fragments. Linear mitogenomes are characteristic of members of Medusozoa, one of the major lineages of Cnidaria, but are unreported for Anthozoa, which includes the Ceriantharia. The inferred number of fragments and variation in gene order between species is much greater within Ceriantharia than among the lineages of Medusozoa. We identify origins of replication for each of the five putative chromosomes of the Isarachnanthus nocturnus mitogenome and for each of the eight putative chromosomes of the Pachycerianthus magnus mitogenome. At 80,923 bp, I. nocturnus now holds the record for the largest animal mitochondrial genome reported to date. The novelty of the mitogenomic structure in Ceriantharia highlights the distinctiveness of this lineage but, because it appears to be both unique to and diverse within Ceriantharia, it is uninformative about the phylogenetic position of Ceriantharia relative to other Anthozoa. The presence of tRNAMet and tRNATrp in both ceriantharian mitogenomes supports a closer relationship between Ceriantharia and Hexacorallia than between Ceriantharia and any other cnidarian lineage, but phylogenetic analysis of the genes contained in the mitogenomes suggests that Ceriantharia is sister to a clade containing Octocorallia + Hexacorallia indicating a possible suppression of tRNATrp in Octocorallia.
Collapse
Affiliation(s)
- Sérgio N Stampar
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, UNESP - Universidade Estadual Paulista, Assis, SP, Brazil.
| | - Michael B Broe
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biology, Florida Southern College, Lakeland, FL, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mercer R Brugler
- Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, New York, 11201, USA.,Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Wai A, Shen C, Carta A, Dansen A, Crous PW, Hausner G. Intron-encoded ribosomal proteins and N-acetyltransferases within the mitochondrial genomes of fungi: here today, gone tomorrow? Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:573-584. [DOI: 10.1080/24701394.2019.1580272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chen Shen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrell Carta
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alexandra Dansen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Pedro W. Crous
- The Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, The Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Dubin A, Chi SI, Emblem Å, Moum T, Johansen SD. Deep-water sea anemone with a two-chromosome mitochondrial genome. Gene 2019; 692:195-200. [PMID: 30641219 DOI: 10.1016/j.gene.2018.12.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Mitochondrial genome organization of sea anemones appears conserved among species and families, and is represented by a single circular DNA molecule of 17 to 21 kb. The mitochondrial gene content corresponds to the same 13 protein components of the oxidative phosphorylation (OxPhos) system as in vertebrates. Hallmarks, however, include a highly reduced tRNA gene repertoire and the presence of autocatalytic group I introns. Here we demonstrate that the mitochondrial genome of the deep-water sea anemone Protanthea simplex deviates significantly from that of other known sea anemones. The P. simplex mitochondrial genome contains a heavily scrambled order of genes that are coded on both DNA strands and organized along two circular mito-chromosomes, MCh-I and MCh-II. We found MCh-I to be representative of the prototypic sea anemone mitochondrial genome, encoding 12 OxPhos proteins, two ribosomal RNAs, two transfer RNAs, and a group I intron. In contrast, MCh-II was found to be a laterally transferred plasmid-like DNA carrying the conserved cytochrome oxidase II gene and a second allele of the small subunit ribosomal RNA gene.
Collapse
Affiliation(s)
- Arseny Dubin
- Genomics group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Sylvia Ighem Chi
- Department of Medical Biology, Faculty of Health Sciences, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Åse Emblem
- Department of Medical Biology, Faculty of Health Sciences, UiT - Arctic University of Norway, Tromsø, Norway; Research Laboratory and Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway.
| | - Truls Moum
- Genomics group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Steinar D Johansen
- Genomics group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT - Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
13
|
Chi SI, Urbarova I, Johansen SD. Expression of homing endonuclease gene and insertion-like element in sea anemone mitochondrial genomes: Lesson learned from Anemonia viridis. Gene 2018; 652:78-86. [PMID: 29366757 DOI: 10.1016/j.gene.2018.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/19/2017] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
The mitochondrial genomes of sea anemones are dynamic in structure. Invasion by genetic elements, such as self-catalytic group I introns or insertion-like sequences, contribute to sea anemone mitochondrial genome expansion and complexity. By using next generation sequencing we investigated the complete mtDNAs and corresponding transcriptomes of the temperate sea anemone Anemonia viridis and its closer tropical relative Anemonia majano. Two versions of fused homing endonuclease gene (HEG) organization were observed among the Actiniidae sea anemones; in-frame gene fusion and pseudo-gene fusion. We provided support for the pseudo-gene fusion organization in Anemonia species, resulting in a repressed HEG from the COI-884 group I intron. orfA, a putative protein-coding gene with insertion-like features, was present in both Anemonia species. Interestingly, orfA and COI expression were significantly up-regulated upon long-term environmental stress corresponding to low seawater pH conditions. This study provides new insights to the dynamics of sea anemone mitochondrial genome structure and function.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
14
|
Baleva MV, Meyer M, Entelis N, Tarassov I, Kamenski P, Masquida B. Factors beyond Enolase 2 and Mitochondrial Lysyl-tRNA Synthetase Precursor Are Required for tRNA Import into Yeast Mitochondria. BIOCHEMISTRY (MOSCOW) 2017; 82:1324-1335. [PMID: 29223159 DOI: 10.1134/s0006297917110104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In yeast, the import of tRNALys with CUU anticodon (tRK1) relies on a complex mechanism where interaction with enolase 2 (Eno2p) dictates a deep conformational change of the tRNA. This event is believed to mask the tRNA from the cytosolic translational machinery to re-direct it towards the mitochondria. Once near the mitochondrial outer membrane, the precursor of the mitochondrial lysyl-tRNA synthetase (preMsk1p) takes over enolase to carry the tRNA within the mitochondrial matrix, where it is supposed to participate in translation following correct refolding. Biochemical data presented in this report focus on the role of enolase. They show that despite the inability of Eno2p alone to form a complex with tRK1, mitochondrial import can be recapitulated in vitro using fractions of yeast extracts sharing either recombinant or endogenous yeast Eno2p as one of the main components. Taken together, our data suggest the existence of a protein complex containing Eno2p that is involved in RNA mitochondrial import.
Collapse
Affiliation(s)
- M V Baleva
- GMGM, CNRS - University of Strasbourg, UMR 7156, Strasbourg, 67081, France.
| | | | | | | | | | | |
Collapse
|
15
|
Zoantharian mitochondrial genomes contain unique complex group I introns and highly conserved intergenic regions. Gene 2017; 628:24-31. [DOI: 10.1016/j.gene.2017.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022]
|
16
|
Zhang B, Zhang Y, Wang X, Zhang H, Lin Q. The mitochondrial genome of a sea anemone Bolocera sp. exhibits novel genetic structures potentially involved in adaptation to the deep-sea environment. Ecol Evol 2017; 7:4951-4962. [PMID: 28690821 PMCID: PMC5496520 DOI: 10.1002/ece3.3067] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/14/2023] Open
Abstract
The deep sea is one of the most extensive ecosystems on earth. Organisms living there survive in an extremely harsh environment, and their mitochondrial energy metabolism might be a result of evolution. As one of the most important organelles, mitochondria generate energy through energy metabolism and play an important role in almost all biological activities. In this study, the mitogenome of a deep‐sea sea anemone (Bolocera sp.) was sequenced and characterized. Like other metazoans, it contained 13 energy pathway protein‐coding genes and two ribosomal RNAs. However, it also exhibited some unique features: just two transfer RNA genes, two group I introns, two transposon‐like noncanonical open reading frames (ORFs), and a control region‐like (CR‐like) element. All of the mitochondrial genes were coded by the same strand (the H‐strand). The genetic order and orientation were identical to those of most sequenced actiniarians. Phylogenetic analyses showed that this species was closely related to Bolocera tuediae. Positive selection analysis showed that three residues (31 L and 42 N in ATP6, 570 S in ND5) of Bolocera sp. were positively selected sites. By comparing these features with those of shallow sea anemone species, we deduced that these novel gene features may influence the activity of mitochondrial genes. This study may provide some clues regarding the adaptation of Bolocera sp. to the deep‐sea environment.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan‐Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui‐Xian Zhang
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
17
|
Schuster A, Lopez JV, Becking LE, Kelly M, Pomponi SA, Wörheide G, Erpenbeck D, Cárdenas P. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding. BMC Evol Biol 2017; 17:82. [PMID: 28320321 PMCID: PMC5360047 DOI: 10.1186/s12862-017-0928-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. RESULTS For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. CONCLUSION This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004 USA
| | - Leontine E. Becking
- Marine Animal Ecology, Wageningen University & Research Centre, P.O. Box 3700, AH, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Marine Zoology Department, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - Michelle Kelly
- National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, P.O. Box 109–695, Newmarket, Auckland, New Zealand
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute-Florida Atlantic University, 5600 U.S. 1 North, Ft Pierce, FL 34946 USA
| | - Gert Wörheide
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- SNSB - Bavarian State Collections of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Paco Cárdenas
- Department of Medicinal Chemistry, Division of Pharmacognosy, BioMedical Center, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
18
|
Capel KCC, Migotto AE, Zilberberg C, Lin MF, Forsman Z, Miller DJ, Kitahara MV. Complete mitochondrial genome sequences of Atlantic representatives of the invasive Pacific coral species Tubastraea coccinea and T. tagusensis (Scleractinia, Dendrophylliidae): Implications for species identification. Gene 2016; 590:270-7. [PMID: 27234370 DOI: 10.1016/j.gene.2016.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Members of the azooxanthellate coral genus Tubastraea are invasive species with particular concern because they have become established and are fierce competitors in the invaded areas in many parts of the world. Pacific Tubastraea species are spreading fast throughout the Atlantic Ocean, occupying over 95% of the available substrate in some areas and out-competing native endemic species. Approximately half of all known coral species are azooxanthellate but these are seriously under-represented compared to zooxanthellate corals in terms of the availability of mitochondrial (mt) genome data. In the present study, the complete mt DNA sequences of Atlantic individuals of the invasive scleractinian species Tubastraea coccinea and Tubastraea tagusensis were determined and compared to the GenBank reference sequence available for a Pacific "T. coccinea" individual. At 19,094bp (compared to 19,070bp for the GenBank specimen), the mt genomes assembled for the Atlantic T. coccinea and T. tagusensis were among the longest sequence determined to date for "Complex" scleractinians. Comparisons of genomes data showed that the "T. coccinea" sequence deposited on GenBank was more closely related to that from Dendrophyllia arbuscula than to the Atlantic Tubastraea spp., in terms of genome length and base pair similarities. This was confirmed by phylogenetic analysis, suggesting that the former was misidentified and might actually be a member from the genus Dendrophyllia. In addition, although in general the COX1 locus has a slow evolutionary rate in Scleractinia, it was the most variable region of the Tubastraea mt genome and can be used as markers for genus or species identification. Given the limited data available for azooxanthellate corals, the results presented here represent an important contribution to our understanding of phylogenetic relationships and the evolutionary history of the Scleractinia.
Collapse
Affiliation(s)
- K C C Capel
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A E Migotto
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - C Zilberberg
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M F Lin
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia; Biodiversity Research Centre, Academia Sinica, Taipei, Taiwan; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Z Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, USA
| | - D J Miller
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M V Kitahara
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil; Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
19
|
Addamo AM, Vertino A, Stolarski J, García-Jiménez R, Taviani M, Machordom A. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 2016; 16:108. [PMID: 27193263 PMCID: PMC4870751 DOI: 10.1186/s12862-016-0654-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/12/2016] [Indexed: 12/16/2022] Open
Abstract
Background In recent years, several types of molecular markers and new microscale skeletal characters have shown potential as powerful tools for phylogenetic reconstructions and higher-level taxonomy of scleractinian corals. Nonetheless, discrimination of closely related taxa is still highly controversial in scleractinian coral research. Here we used newly sequenced complete mitochondrial genomes and 30 microsatellites to define the genetic divergence between two closely related azooxanthellate taxa of the family Caryophylliidae: solitary Desmophyllum dianthus and colonial Lophelia pertusa. Results In the mitochondrial control region, an astonishing 99.8 % of nucleotides between L. pertusa and D. dianthus were identical. Variability of the mitochondrial genomes of the two species is represented by only 12 non-synonymous out of 19 total nucleotide substitutions. Microsatellite sequence (37 loci) analysis of L. pertusa and D. dianthus showed genetic similarity is about 97 %. Our results also indicated that L. pertusa and D. dianthus show high skeletal plasticity in corallum shape and similarity in skeletal ontogeny, micromorphological (septal and wall granulations) and microstructural characters (arrangement of rapid accretion deposits, thickening deposits). Conclusions Molecularly and morphologically, the solitary Desmophyllum and the dendroid Lophelia appear to be significantly more similar to each other than other unambiguous coral genera analysed to date. This consequently leads to ascribe both taxa under the generic name Desmophyllum (priority by date of publication). Findings of this study demonstrate that coloniality may not be a robust taxonomic character in scleractinian corals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0654-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Addamo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Agostina Vertino
- Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra, Università di Milano Bicocca (UNIMIB), Piazza della Scienza 4, 20126, Milan, Italy.,Department of Geology Renard Centre of Marine Geology, Universiteit Ghent, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Jaroslaw Stolarski
- Polskiej Akademii Nauk, Instytut Paleobiologii, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Ricardo García-Jiménez
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Marco Taviani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (ISMAR), Via Gobetti 101, 40129, Bologna, Italy.,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, 02543, MA, USA.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
20
|
Lin MF, Kitahara MV, Luo H, Tracey D, Geller J, Fukami H, Miller DJ, Chen CA. Mitochondrial genome rearrangements in the scleractinia/corallimorpharia complex: implications for coral phylogeny. Genome Biol Evol 2016; 6:1086-95. [PMID: 24769753 PMCID: PMC4040992 DOI: 10.1093/gbe/evu084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Corallimorpharia is a small Order of skeleton-less animals that is closely related to the reef-building corals (Scleractinia) and of fundamental interest in the context of understanding the potential impacts of climate change in the future on coral reefs. The relationship between the nominal Orders Corallimorpharia and Scleractinia is controversial—the former is either the closest outgroup to the Scleractinia or alternatively is derived from corals via skeleton loss. This latter scenario, the “naked coral” hypothesis, is strongly supported by analyses based on mitochondrial (mt) protein sequences, whereas the former is equally strongly supported by analyses of mt nucleotide sequences. The “naked coral” hypothesis seeks to link skeleton loss in the putative ancestor of corallimorpharians with a period of elevated oceanic CO2 during the Cretaceous, leading to the idea that these skeleton-less animals may be harbingers for the fate of coral reefs under global climate change. In an attempt to better understand their evolutionary relationships, we examined mt genome organization in a representative range (12 species, representing 3 of the 4 extant families) of corallimorpharians and compared these patterns with other Hexacorallia. The most surprising finding was that mt genome organization in Corallimorphus profundus, a deep-water species that is the most scleractinian-like of all corallimorpharians on the basis of morphology, was much more similar to the common scleractinian pattern than to those of other corallimorpharians. This finding is consistent with the idea that C. profundus represents a key position in the coral <-> corallimorpharian transition.
Collapse
Affiliation(s)
- Mei-Fang Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Foox J, Brugler M, Siddall ME, Rodríguez E. Multiplexed pyrosequencing of nine sea anemone (Cnidaria: Anthozoa: Hexacorallia: Actiniaria) mitochondrial genomes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2826-32. [PMID: 26104159 DOI: 10.3109/19401736.2015.1053114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Six complete and three partial actiniarian mitochondrial genomes were amplified in two semi-circles using long-range PCR and pyrosequenced in a single run on a 454 GS Junior, doubling the number of complete mitogenomes available within the order. Typical metazoan mtDNA features included circularity, 13 protein-coding genes, 2 ribosomal RNA genes, and length ranging from 17,498 to 19,727 bp. Several typical anthozoan mitochondrial genome features were also observed including the presence of only two transfer RNA genes, elevated A + T richness ranging from 54.9 to 62.4%, large intergenic regions, and group 1 introns interrupting NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit I, the latter of which possesses a homing endonuclease gene. Within the sea anemone Alicia sansibarensis, we report the first mitochondrial gene order rearrangement within the Actiniaria, as well as putative novel non-canonical protein-coding genes. Phylogenetic analyses of all 13 protein-coding and 2 ribosomal genes largely corroborated current hypotheses of sea anemone interrelatedness, with a few lower-level differences.
Collapse
Affiliation(s)
- Jonathan Foox
- a Richard Gilder Graduate School, American Museum of Natural History , New York , NY , USA
| | - Mercer Brugler
- b Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History , New York , NY , USA , and.,c Biological Sciences Department, NYC College of Technology (CUNY) , Brooklyn , NY , USA
| | - Mark Edward Siddall
- a Richard Gilder Graduate School, American Museum of Natural History , New York , NY , USA .,b Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History , New York , NY , USA , and
| | - Estefanía Rodríguez
- a Richard Gilder Graduate School, American Museum of Natural History , New York , NY , USA .,b Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History , New York , NY , USA , and
| |
Collapse
|
22
|
Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA. Int J Mol Sci 2015; 16:9354-67. [PMID: 25918939 PMCID: PMC4463592 DOI: 10.3390/ijms16059354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).
Collapse
Affiliation(s)
- Maria Baleva
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Piotr Kamenski
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Benoît Masquida
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
23
|
Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 2014; 30:555-64. [PMID: 25263762 DOI: 10.1016/j.tig.2014.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/24/2022]
Abstract
Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, 90 Avenue Vincent d'Indy, Montréal, Québec H2V 2S9, Canada.
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Davide Guerra
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Donald T Stewart
- Department of Biology, Acadia University, 24 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
24
|
Emblem Å, Okkenhaug S, Weiss ES, Denver DR, Karlsen BO, Moum T, Johansen SD. Sea anemones possess dynamic mitogenome structures. Mol Phylogenet Evol 2014; 75:184-93. [DOI: 10.1016/j.ympev.2014.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/31/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
|
25
|
Kitahara MV, Lin MF, Forêt S, Huttley G, Miller DJ, Chen CA. The "naked coral" hypothesis revisited--evidence for and against scleractinian monophyly. PLoS One 2014; 9:e94774. [PMID: 24740380 PMCID: PMC3989238 DOI: 10.1371/journal.pone.0094774] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/20/2014] [Indexed: 12/01/2022] Open
Abstract
The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are “naked corals” that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the “naked coral” hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the “naked coral” hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of “Robust” corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the “naked coral” topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data.
Collapse
MESH Headings
- Amino Acids/genetics
- Animals
- Anthozoa/classification
- Anthozoa/genetics
- Base Composition/genetics
- Codon/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Genome, Mitochondrial/genetics
- Mitochondrial Proteins/genetics
- Phylogeny
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Transfer, Met/genetics
- RNA, Transfer, Trp/genetics
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Marcelo V. Kitahara
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Mei-Fang Lin
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Biodiversity Research Centre, Academia Sinica, Taipei, Taiwan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gavin Huttley
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - David J. Miller
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- * E-mail: (CAC); (DJM)
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Taiwan International Graduate Program (TIGP)-Biodiversity, Academia Sinica, Taipei, Taiwan
- * E-mail: (CAC); (DJM)
| |
Collapse
|
26
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Buenteweg 17d, D-30559 Hannover, Germany.
| | | | | | | | | |
Collapse
|
27
|
Hedberg A, Johansen SD. Nuclear group I introns in self-splicing and beyond. Mob DNA 2013; 4:17. [PMID: 23738941 PMCID: PMC3679873 DOI: 10.1186/1759-8753-4-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/14/2013] [Indexed: 01/09/2023] Open
Abstract
Group I introns are a distinct class of RNA self-splicing introns with an ancient origin. All known group I introns present in eukaryote nuclei interrupt functional ribosomal RNA genes located in ribosomal DNA loci. The discovery of the Tetrahymena intron more than 30 years ago has been essential to our understanding of group I intron catalysis, higher-order RNA structure, and RNA folding, but other intron models have provided information about the biological role. Nuclear group I introns appear widespread among eukaryotic microorganisms, and the plasmodial slime molds (myxomycetes) contain an abundance of self-splicing introns. Here, we summarize the main conclusions from previous work on the Tetrahymena intron on RNA self-splicing catalysis as well as more recent work on myxomycete intron biology. Group I introns in myxomycetes that represent different evolutionary stages, biological roles, and functional settings are discussed.
Collapse
Affiliation(s)
- Annica Hedberg
- RNA lab-RAMP, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø N-9037, Norway.
| | | |
Collapse
|
28
|
Flot JF, Dahl M, André C. Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Res Notes 2013; 6:144. [PMID: 23578100 PMCID: PMC3637110 DOI: 10.1186/1756-0500-6-144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Lophelia pertusa is a keystone cold-water coral species with a widespread distribution. Due to the lack of a mitochondrial marker variable enough for intraspecific analyses, the population structure of this species has only been studied using ITS and microsatellites so far. We therefore decided to sequence and compare complete mitochondrial genomes from two distant L. pertusa populations putatively isolated from each other (in the Barents Sea off Norway and in the Mediterranean Sea off Italy) in the hope of finding regions variable enough for population genetic and phylogeographic studies. Results The mitogenomes of two L. pertusa individuals collected in the Mediterranean and Barents seas differed at only one position, which was a non-synonymous substitution, but comparison with another recently published L. pertusa mitochondrial genome sequence from Norway revealed 18 nucleotide differences. These included two synonymous and nine non-synonymous substitutions in protein-coding genes (dN/dS > 1): hence, the mitogenome of L. pertusa may be experiencing positive selection. To test for the presence of cryptic species, the mitochondrial control region and the nuclear ITS2 were sequenced for five individuals from each site: Italian and Norwegian populations turned out to share haplotypes of both markers, indicating that they belonged to the same species. Conclusions L. pertusa corals collected 7,500 km apart shared identical nuclear ITS2 and near-identical mitogenomes, supporting the hypothesis of a recent connection between Lophelia reefs in the Mediterranean and in the Northern Atlantic. Multi-locus or population genomic approaches will be required to shed further light on the genetic connectivity between L. pertusa reefs across Europe; nevertheless, ITS2 and the mitochondrial control region may be useful markers for investigating the phylogeography and species boundaries of the keystone genus Lophelia across its worldwide area of distribution.
Collapse
|
29
|
Wang M, Sun J, Li J, Qiu JW. Complete mitochondrial genome of the brain coral Platygyra carnosus. ACTA ACUST UNITED AC 2013; 24:194-5. [PMID: 23688266 DOI: 10.3109/19401736.2012.744981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the importance of many species of Faviidae as structural-forming corals, only five species in three genera had a sequenced mitochondrial genome. We report the sixth complete mitochondrial genome in this family from the brain coral Platygyra carnosus, which is 16,463 bp in length and AT rich (67.0%). It has the typical coral mitochondrial gene arrangement, consisting of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 2 transfer RNA (tRNA) genes (tRNA-Met and tRNA-Trp). The ND5 gene is interrupted by a large group I intron which contains 10 protein-coding genes and 12S rRNA. Compared with related species from the same family, the three non-coding regions that are longer than 200 bp are less conserved in sequences than the coding regions, indicating potential markers for population genetic studies.
Collapse
Affiliation(s)
- Mingling Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 2013; 13:5. [PMID: 23302374 PMCID: PMC3598815 DOI: 10.1186/1471-2148-13-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.
Collapse
Affiliation(s)
- Ehsan Kayal
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 20013-7012, Washington, DC, USA
| | - Béatrice Roure
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Hervé Philippe
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Allen G Collins
- National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, 20013-7012, Washington, DC, USA
| | - Dennis V Lavrov
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
| |
Collapse
|
31
|
Mitogenome polymorphism in a single branch sample revealed by SOLiD deep sequencing of the Lophelia pertusa coral genome. Gene 2012; 506:344-9. [DOI: 10.1016/j.gene.2012.06.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/19/2012] [Indexed: 11/22/2022]
|
32
|
Lin MF, Kitahara MV, Tachikawa H, Fukami H, Miller DJ, Chen CA. Novel organization of the mitochondrial genome in the deep-sea coral, Madrepora oculata (Hexacorallia, Scleractinia, Oculinidae) and its taxonomic implications. Mol Phylogenet Evol 2012; 65:323-8. [PMID: 22760028 DOI: 10.1016/j.ympev.2012.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022]
Abstract
Madrepora is one of the most ecologically important genera of reef-building scleractinians in the deep sea, occurring from tropical to high-latitude regions. Despite this, the taxonomic affinities and relationships within the genus Madrepora remain unclear. To clarify these issues, we sequenced the mitochondrial (mt) genome of the most widespread Madrepora species, M. oculata, and compared this with data for other scleractinians. The architecture of the M. oculata mt genome was very similar to that of other scleractinians, except for a novel gene rearrangement affecting only cox2 and cox3. This pattern of gene organization was common to four geographically distinct M. oculata individuals as well as the congeneric species M. minutiseptum, but was not shared by other genera that are closely related on the basis of cox1 sequence analysis nor other oculinids, suggesting that it might be unique to Madrepora.
Collapse
Affiliation(s)
- Mei-Fang Lin
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|